Cargando…
Improved identifiability of myocardial material parameters by an energy-based cost function
Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported p...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480093/ https://www.ncbi.nlm.nih.gov/pubmed/28188386 http://dx.doi.org/10.1007/s10237-016-0865-3 |
_version_ | 1783245234131435520 |
---|---|
author | Nasopoulou, Anastasia Shetty, Anoop Lee, Jack Nordsletten, David Rinaldi, C. Aldo Lamata, Pablo Niederer, Steven |
author_facet | Nasopoulou, Anastasia Shetty, Anoop Lee, Jack Nordsletten, David Rinaldi, C. Aldo Lamata, Pablo Niederer, Steven |
author_sort | Nasopoulou, Anastasia |
collection | PubMed |
description | Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported parameter intercorrelations in popular constitutive relations, however, obstruct the unique estimation of material parameters and limit the reliable translation of this stiffness metric to clinical practice. Focusing on the role of the cost function (CF) in parameter identifiability, we investigate the performance of a set of geometric indices (based on displacements, strains, cavity volume, wall thickness and apicobasal dimension of the ventricle) and a novel CF derived from energy conservation. Our results, with a commonly used transversely isotropic material model (proposed by Guccione et al.), demonstrate that a single geometry-based CF is unable to uniquely constrain the parameter space. The energy-based CF, conversely, isolates one of the parameters and in conjunction with one of the geometric metrics provides a unique estimation of the parameter set. This gives rise to a new methodology for estimating myocardial material parameters based on the combination of deformation and energetics analysis. The accuracy of the pipeline is demonstrated in silico, and its robustness in vivo, in a total of 8 clinical data sets (7 HF and one control). The mean identified parameters of the Guccione material law were [Formula: see text] and [Formula: see text] ([Formula: see text] , [Formula: see text] , [Formula: see text] ) for the HF cases and [Formula: see text] and [Formula: see text] ([Formula: see text] , [Formula: see text] , [Formula: see text] ) for the healthy case. |
format | Online Article Text |
id | pubmed-5480093 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-54800932017-07-06 Improved identifiability of myocardial material parameters by an energy-based cost function Nasopoulou, Anastasia Shetty, Anoop Lee, Jack Nordsletten, David Rinaldi, C. Aldo Lamata, Pablo Niederer, Steven Biomech Model Mechanobiol Original Paper Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported parameter intercorrelations in popular constitutive relations, however, obstruct the unique estimation of material parameters and limit the reliable translation of this stiffness metric to clinical practice. Focusing on the role of the cost function (CF) in parameter identifiability, we investigate the performance of a set of geometric indices (based on displacements, strains, cavity volume, wall thickness and apicobasal dimension of the ventricle) and a novel CF derived from energy conservation. Our results, with a commonly used transversely isotropic material model (proposed by Guccione et al.), demonstrate that a single geometry-based CF is unable to uniquely constrain the parameter space. The energy-based CF, conversely, isolates one of the parameters and in conjunction with one of the geometric metrics provides a unique estimation of the parameter set. This gives rise to a new methodology for estimating myocardial material parameters based on the combination of deformation and energetics analysis. The accuracy of the pipeline is demonstrated in silico, and its robustness in vivo, in a total of 8 clinical data sets (7 HF and one control). The mean identified parameters of the Guccione material law were [Formula: see text] and [Formula: see text] ([Formula: see text] , [Formula: see text] , [Formula: see text] ) for the HF cases and [Formula: see text] and [Formula: see text] ([Formula: see text] , [Formula: see text] , [Formula: see text] ) for the healthy case. Springer Berlin Heidelberg 2017-02-10 2017 /pmc/articles/PMC5480093/ /pubmed/28188386 http://dx.doi.org/10.1007/s10237-016-0865-3 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Paper Nasopoulou, Anastasia Shetty, Anoop Lee, Jack Nordsletten, David Rinaldi, C. Aldo Lamata, Pablo Niederer, Steven Improved identifiability of myocardial material parameters by an energy-based cost function |
title | Improved identifiability of myocardial material parameters by an energy-based cost function |
title_full | Improved identifiability of myocardial material parameters by an energy-based cost function |
title_fullStr | Improved identifiability of myocardial material parameters by an energy-based cost function |
title_full_unstemmed | Improved identifiability of myocardial material parameters by an energy-based cost function |
title_short | Improved identifiability of myocardial material parameters by an energy-based cost function |
title_sort | improved identifiability of myocardial material parameters by an energy-based cost function |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480093/ https://www.ncbi.nlm.nih.gov/pubmed/28188386 http://dx.doi.org/10.1007/s10237-016-0865-3 |
work_keys_str_mv | AT nasopoulouanastasia improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction AT shettyanoop improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction AT leejack improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction AT nordslettendavid improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction AT rinaldicaldo improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction AT lamatapablo improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction AT niederersteven improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction |