Cargando…

Improved identifiability of myocardial material parameters by an energy-based cost function

Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported p...

Descripción completa

Detalles Bibliográficos
Autores principales: Nasopoulou, Anastasia, Shetty, Anoop, Lee, Jack, Nordsletten, David, Rinaldi, C. Aldo, Lamata, Pablo, Niederer, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480093/
https://www.ncbi.nlm.nih.gov/pubmed/28188386
http://dx.doi.org/10.1007/s10237-016-0865-3
_version_ 1783245234131435520
author Nasopoulou, Anastasia
Shetty, Anoop
Lee, Jack
Nordsletten, David
Rinaldi, C. Aldo
Lamata, Pablo
Niederer, Steven
author_facet Nasopoulou, Anastasia
Shetty, Anoop
Lee, Jack
Nordsletten, David
Rinaldi, C. Aldo
Lamata, Pablo
Niederer, Steven
author_sort Nasopoulou, Anastasia
collection PubMed
description Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported parameter intercorrelations in popular constitutive relations, however, obstruct the unique estimation of material parameters and limit the reliable translation of this stiffness metric to clinical practice. Focusing on the role of the cost function (CF) in parameter identifiability, we investigate the performance of a set of geometric indices (based on displacements, strains, cavity volume, wall thickness and apicobasal dimension of the ventricle) and a novel CF derived from energy conservation. Our results, with a commonly used transversely isotropic material model (proposed by Guccione et al.), demonstrate that a single geometry-based CF is unable to uniquely constrain the parameter space. The energy-based CF, conversely, isolates one of the parameters and in conjunction with one of the geometric metrics provides a unique estimation of the parameter set. This gives rise to a new methodology for estimating myocardial material parameters based on the combination of deformation and energetics analysis. The accuracy of the pipeline is demonstrated in silico, and its robustness in vivo, in a total of 8 clinical data sets (7 HF and one control). The mean identified parameters of the Guccione material law were [Formula: see text] and [Formula: see text] ([Formula: see text] , [Formula: see text] , [Formula: see text] ) for the HF cases and [Formula: see text] and [Formula: see text] ([Formula: see text] , [Formula: see text] , [Formula: see text] ) for the healthy case.
format Online
Article
Text
id pubmed-5480093
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-54800932017-07-06 Improved identifiability of myocardial material parameters by an energy-based cost function Nasopoulou, Anastasia Shetty, Anoop Lee, Jack Nordsletten, David Rinaldi, C. Aldo Lamata, Pablo Niederer, Steven Biomech Model Mechanobiol Original Paper Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported parameter intercorrelations in popular constitutive relations, however, obstruct the unique estimation of material parameters and limit the reliable translation of this stiffness metric to clinical practice. Focusing on the role of the cost function (CF) in parameter identifiability, we investigate the performance of a set of geometric indices (based on displacements, strains, cavity volume, wall thickness and apicobasal dimension of the ventricle) and a novel CF derived from energy conservation. Our results, with a commonly used transversely isotropic material model (proposed by Guccione et al.), demonstrate that a single geometry-based CF is unable to uniquely constrain the parameter space. The energy-based CF, conversely, isolates one of the parameters and in conjunction with one of the geometric metrics provides a unique estimation of the parameter set. This gives rise to a new methodology for estimating myocardial material parameters based on the combination of deformation and energetics analysis. The accuracy of the pipeline is demonstrated in silico, and its robustness in vivo, in a total of 8 clinical data sets (7 HF and one control). The mean identified parameters of the Guccione material law were [Formula: see text] and [Formula: see text] ([Formula: see text] , [Formula: see text] , [Formula: see text] ) for the HF cases and [Formula: see text] and [Formula: see text] ([Formula: see text] , [Formula: see text] , [Formula: see text] ) for the healthy case. Springer Berlin Heidelberg 2017-02-10 2017 /pmc/articles/PMC5480093/ /pubmed/28188386 http://dx.doi.org/10.1007/s10237-016-0865-3 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Paper
Nasopoulou, Anastasia
Shetty, Anoop
Lee, Jack
Nordsletten, David
Rinaldi, C. Aldo
Lamata, Pablo
Niederer, Steven
Improved identifiability of myocardial material parameters by an energy-based cost function
title Improved identifiability of myocardial material parameters by an energy-based cost function
title_full Improved identifiability of myocardial material parameters by an energy-based cost function
title_fullStr Improved identifiability of myocardial material parameters by an energy-based cost function
title_full_unstemmed Improved identifiability of myocardial material parameters by an energy-based cost function
title_short Improved identifiability of myocardial material parameters by an energy-based cost function
title_sort improved identifiability of myocardial material parameters by an energy-based cost function
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480093/
https://www.ncbi.nlm.nih.gov/pubmed/28188386
http://dx.doi.org/10.1007/s10237-016-0865-3
work_keys_str_mv AT nasopoulouanastasia improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction
AT shettyanoop improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction
AT leejack improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction
AT nordslettendavid improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction
AT rinaldicaldo improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction
AT lamatapablo improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction
AT niederersteven improvedidentifiabilityofmyocardialmaterialparametersbyanenergybasedcostfunction