Cargando…
Optimal alpha reduces error rates in gene expression studies: a meta-analysis approach
BACKGROUND: Transcriptomic approaches (microarray and RNA-seq) have been a tremendous advance for molecular science in all disciplines, but they have made interpretation of hypothesis testing more difficult because of the large number of comparisons that are done within an experiment. The result has...
Autores principales: | Mudge, J. F., Martyniuk, C. J., Houlahan, J. E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480162/ https://www.ncbi.nlm.nih.gov/pubmed/28637422 http://dx.doi.org/10.1186/s12859-017-1728-3 |
Ejemplares similares
-
Setting an Optimal α That Minimizes Errors in Null Hypothesis Significance Tests
por: Mudge, Joseph F., et al.
Publicado: (2012) -
Assessing the impact of exact reads on reducing the error rate of read mapping
por: Salari, Farzaneh, et al.
Publicado: (2018) -
A novel biclustering approach with iterative optimization to analyze gene expression data
por: Sutheeworapong, Sawannee, et al.
Publicado: (2012) -
Simple regression models as a threshold for selecting AFLP loci with reduced error rates
por: Price, David L, et al.
Publicado: (2012) -
Power for tests of interaction: effect of raising the Type I error rate
por: Marshall, Stephen W
Publicado: (2007)