Cargando…
The modified Yi qi decoction protects cardiac ischemia-reperfusion induced injury in rats
BACKGROUND: To investigate the effects and involved mechanisms of the modified Yi Qi decoction (MYQ) in cardiac ischemia-reperfusion (IR) induced injury. METHODS: Male Sprague-Dawley rats were subjected to a 30-min coronary arterial occlusion followed by reperfusion, low or high dose decoction of MY...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480198/ https://www.ncbi.nlm.nih.gov/pubmed/28637456 http://dx.doi.org/10.1186/s12906-017-1829-6 |
Sumario: | BACKGROUND: To investigate the effects and involved mechanisms of the modified Yi Qi decoction (MYQ) in cardiac ischemia-reperfusion (IR) induced injury. METHODS: Male Sprague-Dawley rats were subjected to a 30-min coronary arterial occlusion followed by reperfusion, low or high dose decoction of MYQ was administrated orally for 1 week or 1 month. RESULTS: Both in 1 week and 1 month IR rat groups, cardiac function indexes were significantly impaired compared with sham group rats, accompanied with higher ratio of infarct size to risk size, decreased expressions of sodium calcium exchanger (NCX1) and sarcoplasmic reticulum Ca(2+)-ATPase (Serca2a), and different expressions of autophagic proteins, Beclin-1 and LC3. Treatment with MYQ (low or high dose) for 1 week showed no marked beneficial effects on cardiac function and cardiac injury (ratio of infarct size to risk size), although expressions of anti-apoptotic protein, Bcl-2, NCX1 and Serca2a were increased. Treatment with MYQ (low or high dose) for 1 month showed significantly improved effects on cardiac function and cardiac injury (ratio of infarct size to risk size), accompanied with increase of Bcl-2, NCX1 and Serca2a expressions, and decrease of Bax (a pro-apoptotic protein) and Beclin-1 expressions. CONCLUSIONS: The results show that MYQ have potential therapeutic effects on IR-induced cardiac injury, which may be through regulation of apoptotic proteins, cytosolic Ca(2+) handling proteins and autophagic proteins signal pathways. |
---|