Cargando…
Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification
The throughput of spontaneous Raman spectroscopy for cell identification applications is limited to the range of one cell per second because of the relatively low sensitivity. Surface-enhanced Raman scattering (SERS) is a widespread way to amplify the intensity of Raman signals by several orders of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480329/ https://www.ncbi.nlm.nih.gov/pubmed/28685119 http://dx.doi.org/10.3762/bjnano.8.120 |
_version_ | 1783245274757464064 |
---|---|
author | Hassoun, Mohamed W.Schie, Iwan Tolstik, Tatiana Stanca, Sarmiza E Krafft, Christoph Popp, Juergen |
author_facet | Hassoun, Mohamed W.Schie, Iwan Tolstik, Tatiana Stanca, Sarmiza E Krafft, Christoph Popp, Juergen |
author_sort | Hassoun, Mohamed |
collection | PubMed |
description | The throughput of spontaneous Raman spectroscopy for cell identification applications is limited to the range of one cell per second because of the relatively low sensitivity. Surface-enhanced Raman scattering (SERS) is a widespread way to amplify the intensity of Raman signals by several orders of magnitude and, consequently, to improve the sensitivity and throughput. SERS protocols using immuno-functionalized nanoparticles turned out to be challenging for cell identification because they require complex preparation procedures. Here, a new SERS strategy is presented for cell classification using non-functionalized silver nanoparticles and potassium chloride to induce aggregation. To demonstrate the principle, cell lysates were prepared by ultrasonication that disrupts the cell membrane and enables interaction of released cellular biomolecules to nanoparticles. This approach was applied to distinguish four cell lines – Capan-1, HepG2, Sk-Hep1 and MCF-7 – using SERS at 785 nm excitation. Six independent batches were prepared per cell line to check the reproducibility. Principal component analysis was applied for data reduction and assessment of spectral variations that were assigned to proteins, nucleotides and carbohydrates. Four principal components were selected as input for classification models based on support vector machines. Leave-three-batches-out cross validation recognized four cell lines with sensitivities, specificities and accuracies above 96%. We conclude that this reproducible and specific SERS approach offers prospects for cell identification using easily preparable silver nanoparticles. |
format | Online Article Text |
id | pubmed-5480329 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Beilstein-Institut |
record_format | MEDLINE/PubMed |
spelling | pubmed-54803292017-07-06 Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification Hassoun, Mohamed W.Schie, Iwan Tolstik, Tatiana Stanca, Sarmiza E Krafft, Christoph Popp, Juergen Beilstein J Nanotechnol Full Research Paper The throughput of spontaneous Raman spectroscopy for cell identification applications is limited to the range of one cell per second because of the relatively low sensitivity. Surface-enhanced Raman scattering (SERS) is a widespread way to amplify the intensity of Raman signals by several orders of magnitude and, consequently, to improve the sensitivity and throughput. SERS protocols using immuno-functionalized nanoparticles turned out to be challenging for cell identification because they require complex preparation procedures. Here, a new SERS strategy is presented for cell classification using non-functionalized silver nanoparticles and potassium chloride to induce aggregation. To demonstrate the principle, cell lysates were prepared by ultrasonication that disrupts the cell membrane and enables interaction of released cellular biomolecules to nanoparticles. This approach was applied to distinguish four cell lines – Capan-1, HepG2, Sk-Hep1 and MCF-7 – using SERS at 785 nm excitation. Six independent batches were prepared per cell line to check the reproducibility. Principal component analysis was applied for data reduction and assessment of spectral variations that were assigned to proteins, nucleotides and carbohydrates. Four principal components were selected as input for classification models based on support vector machines. Leave-three-batches-out cross validation recognized four cell lines with sensitivities, specificities and accuracies above 96%. We conclude that this reproducible and specific SERS approach offers prospects for cell identification using easily preparable silver nanoparticles. Beilstein-Institut 2017-06-01 /pmc/articles/PMC5480329/ /pubmed/28685119 http://dx.doi.org/10.3762/bjnano.8.120 Text en Copyright © 2017, Hassoun et al. https://creativecommons.org/licenses/by/4.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms) |
spellingShingle | Full Research Paper Hassoun, Mohamed W.Schie, Iwan Tolstik, Tatiana Stanca, Sarmiza E Krafft, Christoph Popp, Juergen Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification |
title | Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification |
title_full | Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification |
title_fullStr | Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification |
title_full_unstemmed | Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification |
title_short | Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification |
title_sort | surface-enhanced raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification |
topic | Full Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480329/ https://www.ncbi.nlm.nih.gov/pubmed/28685119 http://dx.doi.org/10.3762/bjnano.8.120 |
work_keys_str_mv | AT hassounmohamed surfaceenhancedramanspectroscopyofcelllysatesmixedwithsilvernanoparticlesfortumorclassification AT wschieiwan surfaceenhancedramanspectroscopyofcelllysatesmixedwithsilvernanoparticlesfortumorclassification AT tolstiktatiana surfaceenhancedramanspectroscopyofcelllysatesmixedwithsilvernanoparticlesfortumorclassification AT stancasarmizae surfaceenhancedramanspectroscopyofcelllysatesmixedwithsilvernanoparticlesfortumorclassification AT krafftchristoph surfaceenhancedramanspectroscopyofcelllysatesmixedwithsilvernanoparticlesfortumorclassification AT poppjuergen surfaceenhancedramanspectroscopyofcelllysatesmixedwithsilvernanoparticlesfortumorclassification |