Cargando…
Coenzyme B12 synthesis as a baseline to study metabolite contribution of animal microbiota
Microbial communities thrive in a number of environments. Exploration of their microbiomes – their global genome – may reveal metabolic features that contribute to the development and welfare of their hosts, or chemical cleansing of environments. Yet we often lack final demonstration of their causal...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481537/ https://www.ncbi.nlm.nih.gov/pubmed/28612402 http://dx.doi.org/10.1111/1751-7915.12722 |
Sumario: | Microbial communities thrive in a number of environments. Exploration of their microbiomes – their global genome – may reveal metabolic features that contribute to the development and welfare of their hosts, or chemical cleansing of environments. Yet we often lack final demonstration of their causal role in features of interest. The reason is that we do not have proper baselines that we could use to monitor how microbiota cope with key metabolites in the hosting environment. Here, focusing on animal gut microbiota, we describe the fate of cobalamins – metabolites of the B12 coenzyme family – that are essential for animals but synthesized only by prokaryotes. Microbiota produce the vitamin used in a variety of animals (and in algae). Coprophagy plays a role in its management. For coprophobic man, preliminary observations suggest that the gut microbial production of vitamin B12 plays only a limited role. By contrast, the vitamin is key for structuring microbiota. This implies that it is freely available in the environment. This can only result from lysis of the microbes that make it. A consequence for biotechnology applications is that, if valuable for their host, B12‐producing microbes should be sensitive to bacteriophages and colicins, or make spores. |
---|