Cargando…
Comparison of biofilm formation and motility processes in arsenic‐resistant Thiomonas spp. strains revealed divergent response to arsenite
Bacteria of the genus Thiomonas are found ubiquitously in arsenic contaminated waters such as acid mine drainage (AMD), where they contribute to the precipitation and the natural bioremediation of arsenic. In these environments, these bacteria have developed a large range of resistance strategies am...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481541/ https://www.ncbi.nlm.nih.gov/pubmed/28169492 http://dx.doi.org/10.1111/1751-7915.12556 |
_version_ | 1783245410737848320 |
---|---|
author | Farasin, Julien Koechler, Sandrine Varet, Hugo Deschamps, Julien Dillies, Marie‐Agnès Proux, Caroline Erhardt, Mathieu Huber, Aline Jagla, Bernd Briandet, Romain Coppée, Jean‐Yves Arsène‐Ploetze, Florence |
author_facet | Farasin, Julien Koechler, Sandrine Varet, Hugo Deschamps, Julien Dillies, Marie‐Agnès Proux, Caroline Erhardt, Mathieu Huber, Aline Jagla, Bernd Briandet, Romain Coppée, Jean‐Yves Arsène‐Ploetze, Florence |
author_sort | Farasin, Julien |
collection | PubMed |
description | Bacteria of the genus Thiomonas are found ubiquitously in arsenic contaminated waters such as acid mine drainage (AMD), where they contribute to the precipitation and the natural bioremediation of arsenic. In these environments, these bacteria have developed a large range of resistance strategies among which the capacity to form particular biofilm structures. The biofilm formation is one of the most ubiquitous adaptive response observed in prokaryotes to various stresses, such as those induced in the presence of toxic compounds. This study focused on the process of biofilm formation in three Thiomonas strains (CB1, CB2 and CB3) isolated from the same AMD. The results obtained here show that these bacteria are all capable of forming biofilms, but the architecture and the kinetics of formation of these biofilms differ depending on whether arsenite is present in the environment and from one strain to another. Indeed, two strains favoured biofilm formation, whereas one favoured motility in the presence of arsenite. To identify the underlying mechanisms, the patterns of expression of some genes possibly involved in the process of biofilm formation were investigated in Thiomonas sp. CB2 in the presence and absence of arsenite, using a transcriptomic approach (RNA‐seq). The findings obtained here shed interesting light on how the formation of biofilms, and the motility processes contribute to the adaptation of Thiomonas strains to extreme environments. |
format | Online Article Text |
id | pubmed-5481541 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54815412017-06-23 Comparison of biofilm formation and motility processes in arsenic‐resistant Thiomonas spp. strains revealed divergent response to arsenite Farasin, Julien Koechler, Sandrine Varet, Hugo Deschamps, Julien Dillies, Marie‐Agnès Proux, Caroline Erhardt, Mathieu Huber, Aline Jagla, Bernd Briandet, Romain Coppée, Jean‐Yves Arsène‐Ploetze, Florence Microb Biotechnol Research Articles Bacteria of the genus Thiomonas are found ubiquitously in arsenic contaminated waters such as acid mine drainage (AMD), where they contribute to the precipitation and the natural bioremediation of arsenic. In these environments, these bacteria have developed a large range of resistance strategies among which the capacity to form particular biofilm structures. The biofilm formation is one of the most ubiquitous adaptive response observed in prokaryotes to various stresses, such as those induced in the presence of toxic compounds. This study focused on the process of biofilm formation in three Thiomonas strains (CB1, CB2 and CB3) isolated from the same AMD. The results obtained here show that these bacteria are all capable of forming biofilms, but the architecture and the kinetics of formation of these biofilms differ depending on whether arsenite is present in the environment and from one strain to another. Indeed, two strains favoured biofilm formation, whereas one favoured motility in the presence of arsenite. To identify the underlying mechanisms, the patterns of expression of some genes possibly involved in the process of biofilm formation were investigated in Thiomonas sp. CB2 in the presence and absence of arsenite, using a transcriptomic approach (RNA‐seq). The findings obtained here shed interesting light on how the formation of biofilms, and the motility processes contribute to the adaptation of Thiomonas strains to extreme environments. John Wiley and Sons Inc. 2017-02-07 /pmc/articles/PMC5481541/ /pubmed/28169492 http://dx.doi.org/10.1111/1751-7915.12556 Text en © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Farasin, Julien Koechler, Sandrine Varet, Hugo Deschamps, Julien Dillies, Marie‐Agnès Proux, Caroline Erhardt, Mathieu Huber, Aline Jagla, Bernd Briandet, Romain Coppée, Jean‐Yves Arsène‐Ploetze, Florence Comparison of biofilm formation and motility processes in arsenic‐resistant Thiomonas spp. strains revealed divergent response to arsenite |
title | Comparison of biofilm formation and motility processes in arsenic‐resistant Thiomonas spp. strains revealed divergent response to arsenite |
title_full | Comparison of biofilm formation and motility processes in arsenic‐resistant Thiomonas spp. strains revealed divergent response to arsenite |
title_fullStr | Comparison of biofilm formation and motility processes in arsenic‐resistant Thiomonas spp. strains revealed divergent response to arsenite |
title_full_unstemmed | Comparison of biofilm formation and motility processes in arsenic‐resistant Thiomonas spp. strains revealed divergent response to arsenite |
title_short | Comparison of biofilm formation and motility processes in arsenic‐resistant Thiomonas spp. strains revealed divergent response to arsenite |
title_sort | comparison of biofilm formation and motility processes in arsenic‐resistant thiomonas spp. strains revealed divergent response to arsenite |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481541/ https://www.ncbi.nlm.nih.gov/pubmed/28169492 http://dx.doi.org/10.1111/1751-7915.12556 |
work_keys_str_mv | AT farasinjulien comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite AT koechlersandrine comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite AT varethugo comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite AT deschampsjulien comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite AT dilliesmarieagnes comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite AT prouxcaroline comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite AT erhardtmathieu comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite AT huberaline comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite AT jaglabernd comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite AT briandetromain comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite AT coppeejeanyves comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite AT arseneploetzeflorence comparisonofbiofilmformationandmotilityprocessesinarsenicresistantthiomonassppstrainsrevealeddivergentresponsetoarsenite |