Cargando…
The Effect of Soft and Rigid Cervical Collars on Head and Neck Immobilization in Healthy Subjects
STUDY DESIGN: Whiplash injury is a prevalent and often destructive injury of the cervical column, which can lead to serious neck pain. Many approaches have been suggested for the treatment of whiplash injury, including anti-inflammatory drugs, manipulation, supervised exercise, and cervical collars....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Spine Surgery
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481593/ https://www.ncbi.nlm.nih.gov/pubmed/28670406 http://dx.doi.org/10.4184/asj.2017.11.3.390 |
Sumario: | STUDY DESIGN: Whiplash injury is a prevalent and often destructive injury of the cervical column, which can lead to serious neck pain. Many approaches have been suggested for the treatment of whiplash injury, including anti-inflammatory drugs, manipulation, supervised exercise, and cervical collars. Cervical collars are generally divided into two groups: soft and rigid collars. PURPOSE: The present study aimed to compare the effect of soft and rigid cervical collars on immobilizing head and neck motion. OVERVIEW OF LITERATURE: Many studies have investigated the effect of collars on neck motion. Rigid collars have been shown to provide more immobilization in the sagittal and transverse planes compared with soft collars. However, according to some studies, soft and rigid collars provide the same range of motion in the frontal plane. METHODS: Twenty-nine healthy subjects aged 18–26 participated in this study. Data were collected using a three-dimensional motion analysis system and six infrared cameras. Eight markers, weighing 4.4 g and thickened 2 cm(2) were used to record kinematic data. According to the normality of the data, a paired t-test was used for statistical analyses. The level of significance was set at α=0.01. RESULTS: All motion significantly decreased when subjects used soft collars (p<0.01). According to the obtained data, flexion and lateral rotation experienced the maximum (39%) and minimum (11%) immobilization in all six motions using soft collars. Rigid collars caused maximum immobilization in flexion (59%) and minimum immobilization in the lateral rotation (18%) and limited all motion much more than the soft collar. CONCLUSIONS: This study showed that different cervical collars have different effects on neck motion. Rigid and soft cervical collars used in the present study limited the neck motion in both directions. Rigid collars contributed to significantly more immobilization in all directions. |
---|