Cargando…

Cryotolerance of porcine blastocysts is improved by treating in vitro matured oocytes with L-carnitine prior to fertilization

Sufficient generation of adenosine triphosphate (ATP) by oocytes is critical for fertilization and embryo development. The objective of this study was to determine the effects of supplementing media with L-carnitine, a co-factor required for the metabolism of fatty acids, during the peri-fertilizati...

Descripción completa

Detalles Bibliográficos
Autores principales: LOWE, Jenna L., BARTOLAC, Louise K., BATHGATE, Roslyn, GRUPEN, Christopher G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society for Reproduction and Development 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481628/
https://www.ncbi.nlm.nih.gov/pubmed/28302936
http://dx.doi.org/10.1262/jrd.2016-141
Descripción
Sumario:Sufficient generation of adenosine triphosphate (ATP) by oocytes is critical for fertilization and embryo development. The objective of this study was to determine the effects of supplementing media with L-carnitine, a co-factor required for the metabolism of fatty acids, during the peri-fertilization period on embryo development and energy generation. Firstly, in vitro matured (IVM) porcine oocytes were co-incubated with sperm in IVF medium supplemented with 0‒24 mM L-carnitine. The blastocyst formation rate of the control group was greater than those of the L-carnitine groups (P < 0.05), except for the 3 mM L-carnitine group. Subsequently, oocytes and/or sperm were treated without or with 3 mM L-carnitine for either the 1 h pre-IVF oocyte incubation; the pre-IVF sperm preparation; the first 30 min of IVF; or the entire 5.5 h of IVF. Despite similar fertilization rates among the groups, the cleavage rate of the pre-IVF oocyte group was significantly greater than those of the other groups, except for the pre-IVF sperm group. Additionally, the oocyte ATP content and the cryotolerance of the resulting blastocysts were examined following the pre-IVF oocyte treatment. Oocyte ATP content was also similar among the groups (P > 0.05). Following vitrification, the post-warming survival rate of blastocysts derived from L-carnitine-treated oocytes was greater than that of blastocysts derived from untreated oocytes (42.4% vs. 24.9%; P < 0.05). In conclusion, a 1 h oocyte exposure to 3 mM L-carnitine immediately prior to insemination enhanced cleavage and improved the cryotolerance of resulting blastocysts. While the findings are suggestive of a lipolytic action, further studies are required to clarify the contributions of lipid metabolism and oxidative mechanisms to the observed effects of the L-carnitine treatment.