Cargando…

Water extract of Magnolia officinalis cortex inhibits osteoclastogenesis and bone resorption by downregulation of nuclear factor of activated T cells cytoplasmic 1

BACKGROUND: Magnolia officinalis cortex has been traditionally used to treat stomach and intestine diseases in traditional Korean medicine. In this study, we investigated the effect of water extract of M. officinalis cortex (WEMC) on osteoclast differentiation and function. METHODS: Phytochemical ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Shim, Ki-Shuk, Kim, Taesoo, Ha, Hyunil, Lee, Chung-Jo, Lee, Bohyoung, Kim, Han Sung, Park, Ji Hyung, Ma, Jin Yeul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481806/
https://www.ncbi.nlm.nih.gov/pubmed/28664115
http://dx.doi.org/10.1016/j.imr.2015.02.002
Descripción
Sumario:BACKGROUND: Magnolia officinalis cortex has been traditionally used to treat stomach and intestine diseases in traditional Korean medicine. In this study, we investigated the effect of water extract of M. officinalis cortex (WEMC) on osteoclast differentiation and function. METHODS: Phytochemical characterization of WEMC was performed by high-performance liquid chromatography analysis. Osteoclast differentiation of bone marrow-derived macrophages was determined by tartrate-resistant acid phosphatase activity assay. Receptor activator of nuclear factor-κB ligand (RANKL) signaling factors and transcription factors regulating osteoclast differentiation were analyzed by Western blot and real-time polymerase chain reaction. Bone resorption function of mature osteoclasts was examined by using culture plate coated with inorganic crystalline calcium phosphate. Furthermore, the in vivo effect of WEMC on osteoporosis was examined using RANKL-induced bone loss model, characterized by micro-computed tomography and bone metabolism marker analysis. RESULTS: WEMC inhibited RANKL-induced osteoclast differentiation and the bone resorbing activity of mature osteoclasts. WEMC contains gallic acid and honokiol as active constituents contributing to the inhibitory effect of WEMC on osteoclast differentiation. Further, WEMC suppressed RANKL-induced activation of p38 and nuclear factor-κB pathways and expression of osteoclastogenic transcription factors such as c-Fos for AP-1 and nuclear factor of activated T cells cytoplasmic 1. Ectopic overexpression of a constitutive active form of nuclear factor of activated T cells cytoplasmic 1 rescued the antiosteoclastogenic effect of WEMC. Consistent with the in vitro results, WEMC suppressed RANKL-induced trabecular bone loss in mice. CONCLUSION: WEMC might have a therapeutic potential to treat pathological bone diseases due to increased osteoclast differentiation and function.