Cargando…

3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling

BACKGROUND: Alzheimer’s disease is a neurodegenerative disease, characterized by progressive decline in memory and cognitive functions, that results from loss of neurons in the brain. Amyloid beta (Aβ) protein and oxidative stress are major contributors to Alzheimer’s disease, therefore, protecting...

Descripción completa

Detalles Bibliográficos
Autores principales: Telerman, Alona, Ofir, Rivka, Kashman, Yoel, Elmann, Anat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481959/
https://www.ncbi.nlm.nih.gov/pubmed/28645294
http://dx.doi.org/10.1186/s12906-017-1840-y
_version_ 1783245491643875328
author Telerman, Alona
Ofir, Rivka
Kashman, Yoel
Elmann, Anat
author_facet Telerman, Alona
Ofir, Rivka
Kashman, Yoel
Elmann, Anat
author_sort Telerman, Alona
collection PubMed
description BACKGROUND: Alzheimer’s disease is a neurodegenerative disease, characterized by progressive decline in memory and cognitive functions, that results from loss of neurons in the brain. Amyloid beta (Aβ) protein and oxidative stress are major contributors to Alzheimer’s disease, therefore, protecting neuronal cells against Aβ-induced toxicity and oxidative stress might form an effective approach for treatment of this disease. 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone (TTF) is a flavonoid we have purified from the plant Achillea fragrantissima; and the present study examined, for the first time, the effects of this compound on Aβ-toxicity to neuronal cells. METHODS: Various chromatographic techniques were used to isolate TTF from the plant Achillea fragrantissima, and an N2a neuroblastoma cell line was used to study its activities. The cellular levels of total and phosphorylated stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and of total and phosphorylated extracellular signal-regulated kinase (ERK 1/2) were determined by enzyme-linked immunosorbent assay (ELISA). Intracellular reactive oxygen species (ROS) levels were measured by using 2′,7′-dichlorofluorescein diacetate (DCF-DA). Cytotoxicity and cell viability were assessed by using lactate dehydrogenase (LDH) activity in cell-conditioned media, or by crystal violet cell staining, respectively. RESULTS: TTF prevented the Aβ-induced death of neurons and attenuated the intracellular accumulation of ROS following treatment of these cells with Aβ. TTF also inhibited the Aβ-induced phosphorylation of the signaling proteins SAPK/JNK and ERK 1/2, which belong to the mitogen-activated protein kinase (MAPK) family. CONCLUSION: TTF should be studied further as a potential therapeutic means for the treatment of Alzheimer’s disease.
format Online
Article
Text
id pubmed-5481959
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-54819592017-06-23 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling Telerman, Alona Ofir, Rivka Kashman, Yoel Elmann, Anat BMC Complement Altern Med Research Article BACKGROUND: Alzheimer’s disease is a neurodegenerative disease, characterized by progressive decline in memory and cognitive functions, that results from loss of neurons in the brain. Amyloid beta (Aβ) protein and oxidative stress are major contributors to Alzheimer’s disease, therefore, protecting neuronal cells against Aβ-induced toxicity and oxidative stress might form an effective approach for treatment of this disease. 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone (TTF) is a flavonoid we have purified from the plant Achillea fragrantissima; and the present study examined, for the first time, the effects of this compound on Aβ-toxicity to neuronal cells. METHODS: Various chromatographic techniques were used to isolate TTF from the plant Achillea fragrantissima, and an N2a neuroblastoma cell line was used to study its activities. The cellular levels of total and phosphorylated stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and of total and phosphorylated extracellular signal-regulated kinase (ERK 1/2) were determined by enzyme-linked immunosorbent assay (ELISA). Intracellular reactive oxygen species (ROS) levels were measured by using 2′,7′-dichlorofluorescein diacetate (DCF-DA). Cytotoxicity and cell viability were assessed by using lactate dehydrogenase (LDH) activity in cell-conditioned media, or by crystal violet cell staining, respectively. RESULTS: TTF prevented the Aβ-induced death of neurons and attenuated the intracellular accumulation of ROS following treatment of these cells with Aβ. TTF also inhibited the Aβ-induced phosphorylation of the signaling proteins SAPK/JNK and ERK 1/2, which belong to the mitogen-activated protein kinase (MAPK) family. CONCLUSION: TTF should be studied further as a potential therapeutic means for the treatment of Alzheimer’s disease. BioMed Central 2017-06-23 /pmc/articles/PMC5481959/ /pubmed/28645294 http://dx.doi.org/10.1186/s12906-017-1840-y Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Telerman, Alona
Ofir, Rivka
Kashman, Yoel
Elmann, Anat
3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling
title 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling
title_full 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling
title_fullStr 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling
title_full_unstemmed 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling
title_short 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling
title_sort 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone protects against beta amyloid-induced neurotoxicity through antioxidative activity and interference with cell signaling
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481959/
https://www.ncbi.nlm.nih.gov/pubmed/28645294
http://dx.doi.org/10.1186/s12906-017-1840-y
work_keys_str_mv AT telermanalona 354trihydroxy673trimethoxyflavoneprotectsagainstbetaamyloidinducedneurotoxicitythroughantioxidativeactivityandinterferencewithcellsignaling
AT ofirrivka 354trihydroxy673trimethoxyflavoneprotectsagainstbetaamyloidinducedneurotoxicitythroughantioxidativeactivityandinterferencewithcellsignaling
AT kashmanyoel 354trihydroxy673trimethoxyflavoneprotectsagainstbetaamyloidinducedneurotoxicitythroughantioxidativeactivityandinterferencewithcellsignaling
AT elmannanat 354trihydroxy673trimethoxyflavoneprotectsagainstbetaamyloidinducedneurotoxicitythroughantioxidativeactivityandinterferencewithcellsignaling