Cargando…
Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats
It has previously been demonstrated that bone marrow stromal cells (BMSCs) exhibit great therapeutic potential in neuronal injuries; however, there is limited understanding of the precise underlying mechanisms that contribute to functional improvement following brain injury. The aim of the present s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482073/ https://www.ncbi.nlm.nih.gov/pubmed/28560414 http://dx.doi.org/10.3892/mmr.2017.6619 |
_version_ | 1783245513770926080 |
---|---|
author | Feng, Yan Ju, Yaru Cui, Jianzhong Wang, Liqun |
author_facet | Feng, Yan Ju, Yaru Cui, Jianzhong Wang, Liqun |
author_sort | Feng, Yan |
collection | PubMed |
description | It has previously been demonstrated that bone marrow stromal cells (BMSCs) exhibit great therapeutic potential in neuronal injuries; however, there is limited understanding of the precise underlying mechanisms that contribute to functional improvement following brain injury. The aim of the present study was to assess the effect of BMSC treatment on traumatic brain injury (TBI) in rats, and investigate if they migrate to injured areas and promote neuromotor functional recovery via upregulation of neurotrophic factors and synaptic proteins. BMSCs were cultured in vitro from female Sprague Dawley (SD) rat bone marrow and were subsequently infused into male adult SD rats via the tail vein, following induction of TBI. The results demonstrated that treatment with BMSCs significantly reduced TBI-induced neuromotor impairment and neuronal loss, as assessed by rota rod testing, western blot analysis, modified neurological severity score and immunohistochemistry. The distribution of transplanted BMSCs was tracked by monitoring the expression of sex determining region Y (SRY) in rats. The number of cells double-positive for SRY/neuronal nuclear antigen or SRY/glial fibrillary acidic protein was increased in the BMSC group, which demonstrated that BMSCs migrated to injured areas and differentiated into neurons and astrocytes, following TBI. Furthermore, administration of BMSCs increased expression of vascular endothelial growth factor and brain derived neurotrophic factor. Protein expression levels of synaptophysin were downregulated following TBI and this was reversed in part by treatment with BMSCs. These findings uncovered some underlying mechanisms of action of BMSCs, and may lead to their potential use as a future effective therapeutic agent for the treatment of TBI. |
format | Online Article Text |
id | pubmed-5482073 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-54820732017-06-28 Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats Feng, Yan Ju, Yaru Cui, Jianzhong Wang, Liqun Mol Med Rep Articles It has previously been demonstrated that bone marrow stromal cells (BMSCs) exhibit great therapeutic potential in neuronal injuries; however, there is limited understanding of the precise underlying mechanisms that contribute to functional improvement following brain injury. The aim of the present study was to assess the effect of BMSC treatment on traumatic brain injury (TBI) in rats, and investigate if they migrate to injured areas and promote neuromotor functional recovery via upregulation of neurotrophic factors and synaptic proteins. BMSCs were cultured in vitro from female Sprague Dawley (SD) rat bone marrow and were subsequently infused into male adult SD rats via the tail vein, following induction of TBI. The results demonstrated that treatment with BMSCs significantly reduced TBI-induced neuromotor impairment and neuronal loss, as assessed by rota rod testing, western blot analysis, modified neurological severity score and immunohistochemistry. The distribution of transplanted BMSCs was tracked by monitoring the expression of sex determining region Y (SRY) in rats. The number of cells double-positive for SRY/neuronal nuclear antigen or SRY/glial fibrillary acidic protein was increased in the BMSC group, which demonstrated that BMSCs migrated to injured areas and differentiated into neurons and astrocytes, following TBI. Furthermore, administration of BMSCs increased expression of vascular endothelial growth factor and brain derived neurotrophic factor. Protein expression levels of synaptophysin were downregulated following TBI and this was reversed in part by treatment with BMSCs. These findings uncovered some underlying mechanisms of action of BMSCs, and may lead to their potential use as a future effective therapeutic agent for the treatment of TBI. D.A. Spandidos 2017-07 2017-05-25 /pmc/articles/PMC5482073/ /pubmed/28560414 http://dx.doi.org/10.3892/mmr.2017.6619 Text en Copyright: © Feng et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Feng, Yan Ju, Yaru Cui, Jianzhong Wang, Liqun Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats |
title | Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats |
title_full | Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats |
title_fullStr | Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats |
title_full_unstemmed | Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats |
title_short | Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats |
title_sort | bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482073/ https://www.ncbi.nlm.nih.gov/pubmed/28560414 http://dx.doi.org/10.3892/mmr.2017.6619 |
work_keys_str_mv | AT fengyan bonemarrowstromalcellspromoteneuromotorfunctionalrecoveryviaupregulationofneurotrophicfactorsandsynapseproteinsfollowingtraumaticbraininjuryinrats AT juyaru bonemarrowstromalcellspromoteneuromotorfunctionalrecoveryviaupregulationofneurotrophicfactorsandsynapseproteinsfollowingtraumaticbraininjuryinrats AT cuijianzhong bonemarrowstromalcellspromoteneuromotorfunctionalrecoveryviaupregulationofneurotrophicfactorsandsynapseproteinsfollowingtraumaticbraininjuryinrats AT wangliqun bonemarrowstromalcellspromoteneuromotorfunctionalrecoveryviaupregulationofneurotrophicfactorsandsynapseproteinsfollowingtraumaticbraininjuryinrats |