Cargando…
Genetics and geometry of canalization and developmental stability in Drosophila subobscura
BACKGROUND: Many properties of organisms show great robustness against genetic and environmental perturbations. The terms canalization and developmental stability were originally proposed to describe the ability of an organism to resist perturbations and to produce a predictable target phenotype reg...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC548280/ https://www.ncbi.nlm.nih.gov/pubmed/15663797 http://dx.doi.org/10.1186/1471-2148-5-7 |
_version_ | 1782122331758395392 |
---|---|
author | Santos, Mauro Iriarte, Pedro Fernández Céspedes, Walkiria |
author_facet | Santos, Mauro Iriarte, Pedro Fernández Céspedes, Walkiria |
author_sort | Santos, Mauro |
collection | PubMed |
description | BACKGROUND: Many properties of organisms show great robustness against genetic and environmental perturbations. The terms canalization and developmental stability were originally proposed to describe the ability of an organism to resist perturbations and to produce a predictable target phenotype regardless of random developmental noise. However, the extent to which canalization and developmental stability are controlled by the same set of genes and share underlying regulatory mechanisms is largely unresolved. RESULTS: We have analyzed the effects of clinal genetic variation (inversion polymorphism) on wing asymmetry by applying the methods of geometric morphometrics in the context of quantitative genetics using isochromosomal lines of Drosophila subobscura. For the analysis of overall size, developmental stability was positively correlated with levels of heterozygosity and development at the optimal temperature. For analyses of shape, the overall comparisons by matrix correlations indicate that inter- and intraindividual variation levels were poorly correlated, a result also supported when comparing the vectors describing patterns of variation of landmark position. The lack of similarity was basically due to the discrepancy between the genetic and environmental components of the interindividual variation. Finally, the analyses have also underscored the presence of genetic variation for directional asymmetry. CONCLUSIONS: The results strongly support the hypothesis that environmental canalization and developmental stability share underlying regulatory mechanisms, but environmental and genetic canalization are not functionally the same. A likely explanation for this lack of association is that natural wing shape variation in Drosophila populations is loosely related to individual fitness. |
format | Text |
id | pubmed-548280 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-5482802005-02-06 Genetics and geometry of canalization and developmental stability in Drosophila subobscura Santos, Mauro Iriarte, Pedro Fernández Céspedes, Walkiria BMC Evol Biol Research Article BACKGROUND: Many properties of organisms show great robustness against genetic and environmental perturbations. The terms canalization and developmental stability were originally proposed to describe the ability of an organism to resist perturbations and to produce a predictable target phenotype regardless of random developmental noise. However, the extent to which canalization and developmental stability are controlled by the same set of genes and share underlying regulatory mechanisms is largely unresolved. RESULTS: We have analyzed the effects of clinal genetic variation (inversion polymorphism) on wing asymmetry by applying the methods of geometric morphometrics in the context of quantitative genetics using isochromosomal lines of Drosophila subobscura. For the analysis of overall size, developmental stability was positively correlated with levels of heterozygosity and development at the optimal temperature. For analyses of shape, the overall comparisons by matrix correlations indicate that inter- and intraindividual variation levels were poorly correlated, a result also supported when comparing the vectors describing patterns of variation of landmark position. The lack of similarity was basically due to the discrepancy between the genetic and environmental components of the interindividual variation. Finally, the analyses have also underscored the presence of genetic variation for directional asymmetry. CONCLUSIONS: The results strongly support the hypothesis that environmental canalization and developmental stability share underlying regulatory mechanisms, but environmental and genetic canalization are not functionally the same. A likely explanation for this lack of association is that natural wing shape variation in Drosophila populations is loosely related to individual fitness. BioMed Central 2005-01-22 /pmc/articles/PMC548280/ /pubmed/15663797 http://dx.doi.org/10.1186/1471-2148-5-7 Text en Copyright © 2005 Santos et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Santos, Mauro Iriarte, Pedro Fernández Céspedes, Walkiria Genetics and geometry of canalization and developmental stability in Drosophila subobscura |
title | Genetics and geometry of canalization and developmental stability in Drosophila subobscura |
title_full | Genetics and geometry of canalization and developmental stability in Drosophila subobscura |
title_fullStr | Genetics and geometry of canalization and developmental stability in Drosophila subobscura |
title_full_unstemmed | Genetics and geometry of canalization and developmental stability in Drosophila subobscura |
title_short | Genetics and geometry of canalization and developmental stability in Drosophila subobscura |
title_sort | genetics and geometry of canalization and developmental stability in drosophila subobscura |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC548280/ https://www.ncbi.nlm.nih.gov/pubmed/15663797 http://dx.doi.org/10.1186/1471-2148-5-7 |
work_keys_str_mv | AT santosmauro geneticsandgeometryofcanalizationanddevelopmentalstabilityindrosophilasubobscura AT iriartepedrofernandez geneticsandgeometryofcanalizationanddevelopmentalstabilityindrosophilasubobscura AT cespedeswalkiria geneticsandgeometryofcanalizationanddevelopmentalstabilityindrosophilasubobscura |