Cargando…

Development of stereo endoscope system with its innovative master interface for continuous surgical operation

BACKGROUND: Although robotic laparoscopic surgery has various benefits when compared with conventional open surgery and minimally invasive surgery, it also has issues to overcome and one of the issues is the discontinuous surgical flow that occurs whenever control is swapped between the endoscope sy...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Myungjoon, Lee, Chiwon, Hong, Nhayoung, Kim, Yoon Jae, Kim, Sungwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483295/
https://www.ncbi.nlm.nih.gov/pubmed/28646865
http://dx.doi.org/10.1186/s12938-017-0376-1
_version_ 1783245732954767360
author Kim, Myungjoon
Lee, Chiwon
Hong, Nhayoung
Kim, Yoon Jae
Kim, Sungwan
author_facet Kim, Myungjoon
Lee, Chiwon
Hong, Nhayoung
Kim, Yoon Jae
Kim, Sungwan
author_sort Kim, Myungjoon
collection PubMed
description BACKGROUND: Although robotic laparoscopic surgery has various benefits when compared with conventional open surgery and minimally invasive surgery, it also has issues to overcome and one of the issues is the discontinuous surgical flow that occurs whenever control is swapped between the endoscope system and the operating robot arm system. This can lead to problems such as collision between surgical instruments, injury to patients, and increased operation time. To achieve continuous surgical operation, a wireless controllable stereo endoscope system is proposed which enables the simultaneous control of the operating robot arm system and the endoscope system. METHODS: The proposed system consists of two improved novel master interfaces (iNMIs), a four-degrees of freedom (4-DOFs) endoscope control system (ECS), and a simple three-dimensional (3D) endoscope. In order to simultaneously control the proposed system and patient side manipulators of da Vinci research kit (dVRK), the iNMIs are installed to the master tool manipulators of dVRK system. The 4-DOFs ECS consists of four servo motors and employs a two-parallel link structure to provide translational and fulcrum point motion to the simple 3D endoscope. The images acquired by the endoscope undergo stereo calibration and rectification to provide a clear 3D vision to the surgeon as available in clinically used da Vinci surgical robot systems. Tests designed to verify the accuracy, data transfer time, and power consumption of the iNMIs were performed. The workspace was calculated to estimate clinical applicability and a modified peg transfer task was conducted with three novice volunteers. RESULTS: The iNMIs operated for 317 min and moved in accordance with the surgeon’s desire with a mean latency of 5 ms. The workspace was calculated to be 20378.3 cm(3), which exceeds the reference workspace of 549.5 cm(3). The novice volunteers were able to successfully execute the modified peg transfer task designed to evaluate the proposed system’s overall performance. CONCLUSIONS: The experimental results verify that the proposed 3D endoscope system enables continuous surgical flow. The workspace is suitable for the performance of numerous types of surgeries. Therefore, the proposed system is expected to provide much higher safety and efficacy for current surgical robot systems.
format Online
Article
Text
id pubmed-5483295
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-54832952017-06-26 Development of stereo endoscope system with its innovative master interface for continuous surgical operation Kim, Myungjoon Lee, Chiwon Hong, Nhayoung Kim, Yoon Jae Kim, Sungwan Biomed Eng Online Research BACKGROUND: Although robotic laparoscopic surgery has various benefits when compared with conventional open surgery and minimally invasive surgery, it also has issues to overcome and one of the issues is the discontinuous surgical flow that occurs whenever control is swapped between the endoscope system and the operating robot arm system. This can lead to problems such as collision between surgical instruments, injury to patients, and increased operation time. To achieve continuous surgical operation, a wireless controllable stereo endoscope system is proposed which enables the simultaneous control of the operating robot arm system and the endoscope system. METHODS: The proposed system consists of two improved novel master interfaces (iNMIs), a four-degrees of freedom (4-DOFs) endoscope control system (ECS), and a simple three-dimensional (3D) endoscope. In order to simultaneously control the proposed system and patient side manipulators of da Vinci research kit (dVRK), the iNMIs are installed to the master tool manipulators of dVRK system. The 4-DOFs ECS consists of four servo motors and employs a two-parallel link structure to provide translational and fulcrum point motion to the simple 3D endoscope. The images acquired by the endoscope undergo stereo calibration and rectification to provide a clear 3D vision to the surgeon as available in clinically used da Vinci surgical robot systems. Tests designed to verify the accuracy, data transfer time, and power consumption of the iNMIs were performed. The workspace was calculated to estimate clinical applicability and a modified peg transfer task was conducted with three novice volunteers. RESULTS: The iNMIs operated for 317 min and moved in accordance with the surgeon’s desire with a mean latency of 5 ms. The workspace was calculated to be 20378.3 cm(3), which exceeds the reference workspace of 549.5 cm(3). The novice volunteers were able to successfully execute the modified peg transfer task designed to evaluate the proposed system’s overall performance. CONCLUSIONS: The experimental results verify that the proposed 3D endoscope system enables continuous surgical flow. The workspace is suitable for the performance of numerous types of surgeries. Therefore, the proposed system is expected to provide much higher safety and efficacy for current surgical robot systems. BioMed Central 2017-06-24 /pmc/articles/PMC5483295/ /pubmed/28646865 http://dx.doi.org/10.1186/s12938-017-0376-1 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Kim, Myungjoon
Lee, Chiwon
Hong, Nhayoung
Kim, Yoon Jae
Kim, Sungwan
Development of stereo endoscope system with its innovative master interface for continuous surgical operation
title Development of stereo endoscope system with its innovative master interface for continuous surgical operation
title_full Development of stereo endoscope system with its innovative master interface for continuous surgical operation
title_fullStr Development of stereo endoscope system with its innovative master interface for continuous surgical operation
title_full_unstemmed Development of stereo endoscope system with its innovative master interface for continuous surgical operation
title_short Development of stereo endoscope system with its innovative master interface for continuous surgical operation
title_sort development of stereo endoscope system with its innovative master interface for continuous surgical operation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483295/
https://www.ncbi.nlm.nih.gov/pubmed/28646865
http://dx.doi.org/10.1186/s12938-017-0376-1
work_keys_str_mv AT kimmyungjoon developmentofstereoendoscopesystemwithitsinnovativemasterinterfaceforcontinuoussurgicaloperation
AT leechiwon developmentofstereoendoscopesystemwithitsinnovativemasterinterfaceforcontinuoussurgicaloperation
AT hongnhayoung developmentofstereoendoscopesystemwithitsinnovativemasterinterfaceforcontinuoussurgicaloperation
AT kimyoonjae developmentofstereoendoscopesystemwithitsinnovativemasterinterfaceforcontinuoussurgicaloperation
AT kimsungwan developmentofstereoendoscopesystemwithitsinnovativemasterinterfaceforcontinuoussurgicaloperation