Cargando…

Postnatal Migration of Cerebellar Interneurons

Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the externa...

Descripción completa

Detalles Bibliográficos
Autores principales: Galas, Ludovic, Bénard, Magalie, Lebon, Alexis, Komuro, Yutaro, Schapman, Damien, Vaudry, Hubert, Vaudry, David, Komuro, Hitoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483635/
https://www.ncbi.nlm.nih.gov/pubmed/28587295
http://dx.doi.org/10.3390/brainsci7060062
_version_ 1783245788790390784
author Galas, Ludovic
Bénard, Magalie
Lebon, Alexis
Komuro, Yutaro
Schapman, Damien
Vaudry, Hubert
Vaudry, David
Komuro, Hitoshi
author_facet Galas, Ludovic
Bénard, Magalie
Lebon, Alexis
Komuro, Yutaro
Schapman, Damien
Vaudry, Hubert
Vaudry, David
Komuro, Hitoshi
author_sort Galas, Ludovic
collection PubMed
description Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders.
format Online
Article
Text
id pubmed-5483635
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-54836352017-06-28 Postnatal Migration of Cerebellar Interneurons Galas, Ludovic Bénard, Magalie Lebon, Alexis Komuro, Yutaro Schapman, Damien Vaudry, Hubert Vaudry, David Komuro, Hitoshi Brain Sci Review Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders. MDPI 2017-06-06 /pmc/articles/PMC5483635/ /pubmed/28587295 http://dx.doi.org/10.3390/brainsci7060062 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Galas, Ludovic
Bénard, Magalie
Lebon, Alexis
Komuro, Yutaro
Schapman, Damien
Vaudry, Hubert
Vaudry, David
Komuro, Hitoshi
Postnatal Migration of Cerebellar Interneurons
title Postnatal Migration of Cerebellar Interneurons
title_full Postnatal Migration of Cerebellar Interneurons
title_fullStr Postnatal Migration of Cerebellar Interneurons
title_full_unstemmed Postnatal Migration of Cerebellar Interneurons
title_short Postnatal Migration of Cerebellar Interneurons
title_sort postnatal migration of cerebellar interneurons
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483635/
https://www.ncbi.nlm.nih.gov/pubmed/28587295
http://dx.doi.org/10.3390/brainsci7060062
work_keys_str_mv AT galasludovic postnatalmigrationofcerebellarinterneurons
AT benardmagalie postnatalmigrationofcerebellarinterneurons
AT lebonalexis postnatalmigrationofcerebellarinterneurons
AT komuroyutaro postnatalmigrationofcerebellarinterneurons
AT schapmandamien postnatalmigrationofcerebellarinterneurons
AT vaudryhubert postnatalmigrationofcerebellarinterneurons
AT vaudrydavid postnatalmigrationofcerebellarinterneurons
AT komurohitoshi postnatalmigrationofcerebellarinterneurons