Cargando…
Integration of an anti-tumor drug into nanocrystalline assemblies for sustained drug release
Delicate mesoscopic architectures, bearing complex forms with multiple hierarchy levels, lead to significant functions in biogenic minerals. Herein, a bio-inspired approach was developed to fabricate comet-shaped assemblies of an anti-tumor drug – 10-hydroxycamptothecin (HCPT). The anti-solvent co-p...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483847/ https://www.ncbi.nlm.nih.gov/pubmed/28694944 http://dx.doi.org/10.1039/c4sc03392b |
Sumario: | Delicate mesoscopic architectures, bearing complex forms with multiple hierarchy levels, lead to significant functions in biogenic minerals. Herein, a bio-inspired approach was developed to fabricate comet-shaped assemblies of an anti-tumor drug – 10-hydroxycamptothecin (HCPT). The anti-solvent co-precipitation of HCPT and the excipient – PEG-b-PLGA – within the emulsifier leads to the immediate nucleation of comet bundles, followed by a secondary nucleation to generate the comet head, which is an assembly of nanofibers aligned almost in parallel. The continuous manufacturing furnishes drug–excipient hybrid particles with high drug-loading and a sustained drug release profile. This simple and efficient bio-inspired approach led to a promising sustained local drug delivery system, and could be extended to the fabrication of other functional organic materials bearing mesoscopic structural units. |
---|