Cargando…

Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections

The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lackin...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jingjing, Friberg, Ida M., Kift-Morgan, Ann, Parekh, Gita, Morgan, Matt P., Liuzzi, Anna Rita, Lin, Chan-Yu, Donovan, Kieron L., Colmont, Chantal S., Morgan, Peter H., Davis, Paul, Weeks, Ian, Fraser, Donald J., Topley, Nicholas, Eberl, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484022/
https://www.ncbi.nlm.nih.gov/pubmed/28318629
http://dx.doi.org/10.1016/j.kint.2017.01.017
_version_ 1783245812170489856
author Zhang, Jingjing
Friberg, Ida M.
Kift-Morgan, Ann
Parekh, Gita
Morgan, Matt P.
Liuzzi, Anna Rita
Lin, Chan-Yu
Donovan, Kieron L.
Colmont, Chantal S.
Morgan, Peter H.
Davis, Paul
Weeks, Ian
Fraser, Donald J.
Topley, Nicholas
Eberl, Matthias
author_facet Zhang, Jingjing
Friberg, Ida M.
Kift-Morgan, Ann
Parekh, Gita
Morgan, Matt P.
Liuzzi, Anna Rita
Lin, Chan-Yu
Donovan, Kieron L.
Colmont, Chantal S.
Morgan, Peter H.
Davis, Paul
Weeks, Ian
Fraser, Donald J.
Topley, Nicholas
Eberl, Matthias
author_sort Zhang, Jingjing
collection PubMed
description The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage–related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses.
format Online
Article
Text
id pubmed-5484022
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-54840222017-07-10 Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections Zhang, Jingjing Friberg, Ida M. Kift-Morgan, Ann Parekh, Gita Morgan, Matt P. Liuzzi, Anna Rita Lin, Chan-Yu Donovan, Kieron L. Colmont, Chantal S. Morgan, Peter H. Davis, Paul Weeks, Ian Fraser, Donald J. Topley, Nicholas Eberl, Matthias Kidney Int Clinical Investigation The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage–related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses. Elsevier 2017-07 /pmc/articles/PMC5484022/ /pubmed/28318629 http://dx.doi.org/10.1016/j.kint.2017.01.017 Text en © 2017 International Society of Nephrology. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Clinical Investigation
Zhang, Jingjing
Friberg, Ida M.
Kift-Morgan, Ann
Parekh, Gita
Morgan, Matt P.
Liuzzi, Anna Rita
Lin, Chan-Yu
Donovan, Kieron L.
Colmont, Chantal S.
Morgan, Peter H.
Davis, Paul
Weeks, Ian
Fraser, Donald J.
Topley, Nicholas
Eberl, Matthias
Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
title Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
title_full Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
title_fullStr Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
title_full_unstemmed Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
title_short Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
title_sort machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
topic Clinical Investigation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484022/
https://www.ncbi.nlm.nih.gov/pubmed/28318629
http://dx.doi.org/10.1016/j.kint.2017.01.017
work_keys_str_mv AT zhangjingjing machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT fribergidam machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT kiftmorganann machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT parekhgita machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT morganmattp machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT liuzziannarita machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT linchanyu machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT donovankieronl machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT colmontchantals machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT morganpeterh machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT davispaul machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT weeksian machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT fraserdonaldj machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT topleynicholas machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections
AT eberlmatthias machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections