Cargando…
Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lackin...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484022/ https://www.ncbi.nlm.nih.gov/pubmed/28318629 http://dx.doi.org/10.1016/j.kint.2017.01.017 |
_version_ | 1783245812170489856 |
---|---|
author | Zhang, Jingjing Friberg, Ida M. Kift-Morgan, Ann Parekh, Gita Morgan, Matt P. Liuzzi, Anna Rita Lin, Chan-Yu Donovan, Kieron L. Colmont, Chantal S. Morgan, Peter H. Davis, Paul Weeks, Ian Fraser, Donald J. Topley, Nicholas Eberl, Matthias |
author_facet | Zhang, Jingjing Friberg, Ida M. Kift-Morgan, Ann Parekh, Gita Morgan, Matt P. Liuzzi, Anna Rita Lin, Chan-Yu Donovan, Kieron L. Colmont, Chantal S. Morgan, Peter H. Davis, Paul Weeks, Ian Fraser, Donald J. Topley, Nicholas Eberl, Matthias |
author_sort | Zhang, Jingjing |
collection | PubMed |
description | The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage–related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses. |
format | Online Article Text |
id | pubmed-5484022 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-54840222017-07-10 Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections Zhang, Jingjing Friberg, Ida M. Kift-Morgan, Ann Parekh, Gita Morgan, Matt P. Liuzzi, Anna Rita Lin, Chan-Yu Donovan, Kieron L. Colmont, Chantal S. Morgan, Peter H. Davis, Paul Weeks, Ian Fraser, Donald J. Topley, Nicholas Eberl, Matthias Kidney Int Clinical Investigation The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage–related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses. Elsevier 2017-07 /pmc/articles/PMC5484022/ /pubmed/28318629 http://dx.doi.org/10.1016/j.kint.2017.01.017 Text en © 2017 International Society of Nephrology. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Clinical Investigation Zhang, Jingjing Friberg, Ida M. Kift-Morgan, Ann Parekh, Gita Morgan, Matt P. Liuzzi, Anna Rita Lin, Chan-Yu Donovan, Kieron L. Colmont, Chantal S. Morgan, Peter H. Davis, Paul Weeks, Ian Fraser, Donald J. Topley, Nicholas Eberl, Matthias Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections |
title | Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections |
title_full | Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections |
title_fullStr | Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections |
title_full_unstemmed | Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections |
title_short | Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections |
title_sort | machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections |
topic | Clinical Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484022/ https://www.ncbi.nlm.nih.gov/pubmed/28318629 http://dx.doi.org/10.1016/j.kint.2017.01.017 |
work_keys_str_mv | AT zhangjingjing machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT fribergidam machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT kiftmorganann machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT parekhgita machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT morganmattp machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT liuzziannarita machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT linchanyu machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT donovankieronl machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT colmontchantals machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT morganpeterh machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT davispaul machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT weeksian machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT fraserdonaldj machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT topleynicholas machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections AT eberlmatthias machinelearningalgorithmsdefinepathogenspecificlocalimmunefingerprintsinperitonealdialysispatientswithbacterialinfections |