Cargando…

A Novel Lid-Covering Peptide Inhibitor of Nicotinic Acetylcholine Receptors Derived from αD-Conotoxin GeXXA

Nicotinic acetylcholine receptors (nAChRs) play a fundamental role in nervous signal transmission, therefore various antagonists and agonists are highly desired to explore the structure and function of nAChRs. Recently, a novel dimeric αD-conotoxin GeXXA was identified to inhibit nAChRs by binding a...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Longjin, Tae, Han-Shen, Fan, Zhou, Shao, Xiaoxia, Xu, Shaoqiong, Zhao, Suwen, Adams, David J., Wang, Chunguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484114/
https://www.ncbi.nlm.nih.gov/pubmed/28587231
http://dx.doi.org/10.3390/md15060164
Descripción
Sumario:Nicotinic acetylcholine receptors (nAChRs) play a fundamental role in nervous signal transmission, therefore various antagonists and agonists are highly desired to explore the structure and function of nAChRs. Recently, a novel dimeric αD-conotoxin GeXXA was identified to inhibit nAChRs by binding at the top surface of the receptors, and the monomeric C-terminal domain (CTD) of αD-GeXXA retains some inhibitory activity. In this study, the internal dimeric N-terminal domain (NTD) of this conopeptide was further investigated. We first developed a regio-selective protection strategy to chemically prepare the anti-parallel dimeric NTD, and found that the isolated NTD part of GeXXA possesses the nAChR-inhibitory activity, the subtype-dependence of which implies a preferred binding of NTD to the β subunits of nAChR. Deletion of the NTD N-terminal residues did not affect the activity of NTD, indicating that the N-terminus is not involved in the interaction with nAChRs. By optimizing the sequence of NTD, we obtained a fully active single-chain cyclic NTD, based on which 4 Arg residues were found to interact with nAChRs. These results demonstrate that the NTD part of αD-GeXXA is a “lid-covering” nAChR inhibitor, displaying a novel inhibitory mechanism distinct from other allosteric ligands of nAChRs.