Cargando…

Application of Computational Chemical Shift Prediction Techniques to the Cereoanhydride Structure Problem—Carboxylate Complications

Despite the vast array of techniques available to modern-day chemists, structural misassignments still occur. These misassignments are often only realized upon attempted synthesis, when the spectra of synthesized products do not match previously reported spectra. This was the case with marine natura...

Descripción completa

Detalles Bibliográficos
Autores principales: Saunders, Carla M., Tantillo, Dean J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484121/
https://www.ncbi.nlm.nih.gov/pubmed/28604638
http://dx.doi.org/10.3390/md15060171
Descripción
Sumario:Despite the vast array of techniques available to modern-day chemists, structural misassignments still occur. These misassignments are often only realized upon attempted synthesis, when the spectra of synthesized products do not match previously reported spectra. This was the case with marine natural product cereoanhydride. The originally proposed 7-membered ring anhydride (1) was shown to be incorrect, although a likely precursor to the correct structure (2) in both its laboratory synthesis and biosynthesis. Herein, in addition to showing how NMR computations could have been used to arrive at the correct structure, we show that the conversion of 1 to 2 is indeed energetically viable, and we highlight complications in predicting NMR chemical shifts for molecules with acidic protons.