Cargando…

Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach

The mechanical properties of microtubules are of great importance for understanding their biological function and for applications in artificial devices. Although microtubule mechanics has been extensively studied both theoretically and experimentally, the relation to its molecular structure is unde...

Descripción completa

Detalles Bibliográficos
Autores principales: Havelka, Daniel, Deriu, Marco A., Cifra, Michal, Kučera, Ondřej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484714/
https://www.ncbi.nlm.nih.gov/pubmed/28652626
http://dx.doi.org/10.1038/s41598-017-04272-w
Descripción
Sumario:The mechanical properties of microtubules are of great importance for understanding their biological function and for applications in artificial devices. Although microtubule mechanics has been extensively studied both theoretically and experimentally, the relation to its molecular structure is understood only partially. Here, we report on the structural analysis of microtubule vibration modes calculated by an atomistic approach. Molecular dynamics was applied to refine the atomic structure of a microtubule and a C(α) elastic network model was analyzed for its normal modes. We mapped fluctuations and local deformations up to the level of individual aminoacid residues. The deformation is mode-shape dependent and principally different in α-tubulins and β-tubulins. Parts of the tubulin dimer sequence responding specifically to longitudinal and radial stress are identified. We show that substantial strain within a microtubule is located both in the regions of contact between adjacent dimers and in the body of tubulins. Our results provide supportive evidence for the generally accepted assumption that the mechanics of microtubules, including its anisotropy, is determined by the bonds between tubulins.