Cargando…
Supercritical Antisolvent Precipitation of Amorphous Copper–Zinc Georgeite and Acetate Precursors for the Preparation of Ambient‐Pressure Water‐Gas‐Shift Copper/Zinc Oxide Catalysts
A series of copper–zinc acetate and zincian georgeite precursors have been produced by supercritical CO(2) antisolvent (SAS) precipitation as precursors to Cu/ZnO catalysts for the water gas shift (WGS) reaction. The amorphous materials were prepared by varying the water/ethanol volumetric ratio in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485020/ https://www.ncbi.nlm.nih.gov/pubmed/28706569 http://dx.doi.org/10.1002/cctc.201601603 |
_version_ | 1783245988104765440 |
---|---|
author | Smith, Paul J. Kondrat, Simon A. Carter, James H. Chater, Philip A. Bartley, Jonathan K. Taylor, Stuart H. Spencer, Michael S. Hutchings, Graham J. |
author_facet | Smith, Paul J. Kondrat, Simon A. Carter, James H. Chater, Philip A. Bartley, Jonathan K. Taylor, Stuart H. Spencer, Michael S. Hutchings, Graham J. |
author_sort | Smith, Paul J. |
collection | PubMed |
description | A series of copper–zinc acetate and zincian georgeite precursors have been produced by supercritical CO(2) antisolvent (SAS) precipitation as precursors to Cu/ZnO catalysts for the water gas shift (WGS) reaction. The amorphous materials were prepared by varying the water/ethanol volumetric ratio in the initial metal acetate solutions. Water addition promoted georgeite formation at the expense of mixed metal acetates, which are formed in the absence of the water co‐solvent. Optimum SAS precipitation occurs without water to give high surface areas, whereas high water content gives inferior surface areas and copper–zinc segregation. Calcination of the acetates is exothermic, producing a mixture of metal oxides with high crystallinity. However, thermal decomposition of zincian georgeite resulted in highly dispersed CuO and ZnO crystallites with poor structural order. The georgeite‐derived catalysts give superior WGS performance to the acetate‐derived catalysts, which is attributed to enhanced copper–zinc interactions that originate from the precursor. |
format | Online Article Text |
id | pubmed-5485020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54850202017-07-11 Supercritical Antisolvent Precipitation of Amorphous Copper–Zinc Georgeite and Acetate Precursors for the Preparation of Ambient‐Pressure Water‐Gas‐Shift Copper/Zinc Oxide Catalysts Smith, Paul J. Kondrat, Simon A. Carter, James H. Chater, Philip A. Bartley, Jonathan K. Taylor, Stuart H. Spencer, Michael S. Hutchings, Graham J. ChemCatChem Full Papers A series of copper–zinc acetate and zincian georgeite precursors have been produced by supercritical CO(2) antisolvent (SAS) precipitation as precursors to Cu/ZnO catalysts for the water gas shift (WGS) reaction. The amorphous materials were prepared by varying the water/ethanol volumetric ratio in the initial metal acetate solutions. Water addition promoted georgeite formation at the expense of mixed metal acetates, which are formed in the absence of the water co‐solvent. Optimum SAS precipitation occurs without water to give high surface areas, whereas high water content gives inferior surface areas and copper–zinc segregation. Calcination of the acetates is exothermic, producing a mixture of metal oxides with high crystallinity. However, thermal decomposition of zincian georgeite resulted in highly dispersed CuO and ZnO crystallites with poor structural order. The georgeite‐derived catalysts give superior WGS performance to the acetate‐derived catalysts, which is attributed to enhanced copper–zinc interactions that originate from the precursor. John Wiley and Sons Inc. 2017-04-07 2017-05-10 /pmc/articles/PMC5485020/ /pubmed/28706569 http://dx.doi.org/10.1002/cctc.201601603 Text en © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Smith, Paul J. Kondrat, Simon A. Carter, James H. Chater, Philip A. Bartley, Jonathan K. Taylor, Stuart H. Spencer, Michael S. Hutchings, Graham J. Supercritical Antisolvent Precipitation of Amorphous Copper–Zinc Georgeite and Acetate Precursors for the Preparation of Ambient‐Pressure Water‐Gas‐Shift Copper/Zinc Oxide Catalysts |
title | Supercritical Antisolvent Precipitation of Amorphous Copper–Zinc Georgeite and Acetate Precursors for the Preparation of Ambient‐Pressure Water‐Gas‐Shift Copper/Zinc Oxide Catalysts |
title_full | Supercritical Antisolvent Precipitation of Amorphous Copper–Zinc Georgeite and Acetate Precursors for the Preparation of Ambient‐Pressure Water‐Gas‐Shift Copper/Zinc Oxide Catalysts |
title_fullStr | Supercritical Antisolvent Precipitation of Amorphous Copper–Zinc Georgeite and Acetate Precursors for the Preparation of Ambient‐Pressure Water‐Gas‐Shift Copper/Zinc Oxide Catalysts |
title_full_unstemmed | Supercritical Antisolvent Precipitation of Amorphous Copper–Zinc Georgeite and Acetate Precursors for the Preparation of Ambient‐Pressure Water‐Gas‐Shift Copper/Zinc Oxide Catalysts |
title_short | Supercritical Antisolvent Precipitation of Amorphous Copper–Zinc Georgeite and Acetate Precursors for the Preparation of Ambient‐Pressure Water‐Gas‐Shift Copper/Zinc Oxide Catalysts |
title_sort | supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485020/ https://www.ncbi.nlm.nih.gov/pubmed/28706569 http://dx.doi.org/10.1002/cctc.201601603 |
work_keys_str_mv | AT smithpaulj supercriticalantisolventprecipitationofamorphouscopperzincgeorgeiteandacetateprecursorsforthepreparationofambientpressurewatergasshiftcopperzincoxidecatalysts AT kondratsimona supercriticalantisolventprecipitationofamorphouscopperzincgeorgeiteandacetateprecursorsforthepreparationofambientpressurewatergasshiftcopperzincoxidecatalysts AT carterjamesh supercriticalantisolventprecipitationofamorphouscopperzincgeorgeiteandacetateprecursorsforthepreparationofambientpressurewatergasshiftcopperzincoxidecatalysts AT chaterphilipa supercriticalantisolventprecipitationofamorphouscopperzincgeorgeiteandacetateprecursorsforthepreparationofambientpressurewatergasshiftcopperzincoxidecatalysts AT bartleyjonathank supercriticalantisolventprecipitationofamorphouscopperzincgeorgeiteandacetateprecursorsforthepreparationofambientpressurewatergasshiftcopperzincoxidecatalysts AT taylorstuarth supercriticalantisolventprecipitationofamorphouscopperzincgeorgeiteandacetateprecursorsforthepreparationofambientpressurewatergasshiftcopperzincoxidecatalysts AT spencermichaels supercriticalantisolventprecipitationofamorphouscopperzincgeorgeiteandacetateprecursorsforthepreparationofambientpressurewatergasshiftcopperzincoxidecatalysts AT hutchingsgrahamj supercriticalantisolventprecipitationofamorphouscopperzincgeorgeiteandacetateprecursorsforthepreparationofambientpressurewatergasshiftcopperzincoxidecatalysts |