Cargando…
A Machine Learning and Cross-Validation Approach for the Discrimination of Vegetation Physiognomic Types Using Satellite Based Multispectral and Multitemporal Data
This paper presents the performance and evaluation of a number of machine learning classifiers for the discrimination between the vegetation physiognomic classes using the satellite based time-series of the surface reflectance data. Discrimination of six vegetation physiognomic classes, Evergreen Co...
Autores principales: | Sharma, Ram C., Hara, Keitarou, Hirayama, Hidetake |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485338/ https://www.ncbi.nlm.nih.gov/pubmed/28695041 http://dx.doi.org/10.1155/2017/9806479 |
Ejemplares similares
-
Self-Supervised Learning of Satellite-Derived Vegetation Indices for Clustering and Visualization of Vegetation Types
por: Sharma, Ram C., et al.
Publicado: (2021) -
The Physiognomical Significance of the Teeth
por: Warren, George W.
Publicado: (1892) -
The Physiognomical Significance of the Face and Teeth
por: Warren, G. W.
Publicado: (1892) -
Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data
por: Orengo, Hector A., et al.
Publicado: (2020) -
Relaxation-Based Radiometric Normalization for Multitemporal Cross-Sensor Satellite Images
por: Ryadi, Gabriel Yedaya Immanuel, et al.
Publicado: (2023)