Cargando…

Improving the Power Conversion Efficiency of Carbon Quantum Dot-Sensitized Solar Cells by Growing the Dots on a TiO(2) Photoanode In Situ

Dye-sensitized solar cells (DSSCs) are highly promising since they can potentially solve global energy issues. The development of new photosensitizers is the key to fully realizing perspectives proposed to DSSCs. Being cheap and nontoxic, carbon quantum dots (CQDs) have emerged as attractive candida...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Quanxin, Zhang, Geping, Sun, Xiaofeng, Yin, Keyang, Li, Hongguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485777/
https://www.ncbi.nlm.nih.gov/pubmed/28561765
http://dx.doi.org/10.3390/nano7060130
Descripción
Sumario:Dye-sensitized solar cells (DSSCs) are highly promising since they can potentially solve global energy issues. The development of new photosensitizers is the key to fully realizing perspectives proposed to DSSCs. Being cheap and nontoxic, carbon quantum dots (CQDs) have emerged as attractive candidates for this purpose. However, current methodologies to build up CQD-sensitized solar cells (CQDSCs) result in an imperfect apparatus with extremely low power conversion efficiencies (PCEs). Herein, we present a simple strategy of growing carbon quantum dots (CQDs) onto TiO(2) surfaces in situ. The CQDs/TiO(2) hybridized photoanode was then used to construct solar cell with an improved PCE of 0.87%, which is higher than all of the reported CQDSCs adopting the simple post-adsorption method. This result indicates that an in situ growing strategy has great advantages in terms of optimizing the performance of CQDSCs. In addition, we have also found that the mechanisms dominating the performance of CQDSCs are different from those behind the solar cells using inorganic semiconductor quantum dots (ISQDs) as the photosensitizers, which re-confirms the conclusion that the characteristics of CQDs differ from those of ISQDs.