Cargando…
Theoretical Study of the BaTiO(3) Powder’s Volume Ratio’s Influence on the Output of Composite Piezoelectric Nanogenerator
The combination of the piezoelectric materials and polymer is an effective way to make the piezoelectric nanogenerator (PENG) possess both the polymer’s good flexibility and ferroelectric material’s high piezoelectric coefficient. The volume ratio of ferroelectric material in the composite is an imp...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485790/ https://www.ncbi.nlm.nih.gov/pubmed/28598406 http://dx.doi.org/10.3390/nano7060143 |
Sumario: | The combination of the piezoelectric materials and polymer is an effective way to make the piezoelectric nanogenerator (PENG) possess both the polymer’s good flexibility and ferroelectric material’s high piezoelectric coefficient. The volume ratio of ferroelectric material in the composite is an important factor that determines the PENG’s output performance. In this paper, the BaTiO(3)/polydimethylsiloxane (PDMS) composite PENG was demonstrated as having an optimal volume ratio (46%) at which the PENG can output its highest voltage, and this phenomenon can be ascribed to the trade-off between the composite PENG’s top electrode charge and its capacitance. These results are of practical importance for the composite PENG’s performance optimization. |
---|