Cargando…
Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects
Lipid signaling has been suggested to be a major pathophysiological mechanism of multiple sclerosis (MS). With the increasing knowledge about lipid signaling, acquired data become increasingly complex making bioinformatics necessary in lipid research. We used unsupervised machine-learning to analyze...
Autores principales: | Lötsch, Jörn, Thrun, Michael, Lerch, Florian, Brunkhorst, Robert, Schiffmann, Susanne, Thomas, Dominique, Tegder, Irmgard, Geisslinger, Gerd, Ultsch, Alfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486040/ https://www.ncbi.nlm.nih.gov/pubmed/28590455 http://dx.doi.org/10.3390/ijms18061217 |
Ejemplares similares
-
Machine-learning based lipid mediator serum concentration patterns allow identification of multiple sclerosis patients with high accuracy
por: Lötsch, Jörn, et al.
Publicado: (2018) -
Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B–induced local skin hypersensitization in healthy subjects: a machine-learned analysis
por: Lötsch, Jörn, et al.
Publicado: (2018) -
Distribution Optimization: An evolutionary algorithm to separate Gaussian mixtures
por: Lerch, Florian, et al.
Publicado: (2020) -
Identification of Molecular Fingerprints in Human Heat Pain Thresholds by Use of an Interactive Mixture Model R Toolbox (AdaptGauss)
por: Ultsch, Alfred, et al.
Publicado: (2015) -
Disagreement between two common biomarkers of global DNA methylation
por: Knothe, Claudia, et al.
Publicado: (2016)