Cargando…
Improving EEG-Based Emotion Classification Using Conditional Transfer Learning
To overcome the individual differences, an accurate electroencephalogram (EEG)-based emotion-classification system requires a considerable amount of ecological calibration data for each individual, which is labor-intensive and time-consuming. Transfer learning (TL) has drawn increasing attention in...
Autores principales: | Lin, Yuan-Pin, Jung, Tzyy-Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486154/ https://www.ncbi.nlm.nih.gov/pubmed/28701938 http://dx.doi.org/10.3389/fnhum.2017.00334 |
Ejemplares similares
-
Improving Cross-Day EEG-Based Emotion Classification Using Robust Principal Component Analysis
por: Lin, Yuan-Pin, et al.
Publicado: (2017) -
Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening
por: Lin, Yuan-Pin, et al.
Publicado: (2014) -
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
por: Lu, Wei, et al.
Publicado: (2023) -
Transferred Subspace Learning Based on Non-negative Matrix Factorization for EEG Signal Classification
por: Dong, Aimei, et al.
Publicado: (2021) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022)