Cargando…
Antibody against Microbial Neuraminidases Recognizes Human Sialidase 3 (NEU3): the Neuraminidase/Sialidase Superfamily Revisited
Neuraminidases (NAs) are critical virulence factors for several microbial pathogens. With a highly conserved catalytic domain, a microbial NA “superfamily” has been proposed. We previously reported that murine polymorphonuclear leukocyte (PMN) sialidase activity was important in leukocyte traffickin...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487728/ https://www.ncbi.nlm.nih.gov/pubmed/28655817 http://dx.doi.org/10.1128/mBio.00078-17 |
Sumario: | Neuraminidases (NAs) are critical virulence factors for several microbial pathogens. With a highly conserved catalytic domain, a microbial NA “superfamily” has been proposed. We previously reported that murine polymorphonuclear leukocyte (PMN) sialidase activity was important in leukocyte trafficking to inflamed sites and that antibodies to Clostridium perfringens NA recognized a cell surface molecule(s), presumed to be a sialidase of eukaryotic origin on interleukin-8-stimulated human and murine PMNs. These antibodies also inhibited cell sialidase activity both in vitro and, in the latter instance, in vivo. We therefore hypothesized that mammalian sialidases share structural homology and epitopes with microbial NAs. We now report that antibodies to one of the isoforms of C. perfringens NA, as well as anti-influenza virus NA serum, recognize human NEU3 but not NEU1 and that antibodies to C. perfringens NA inhibit NEU3 enzymatic activity. We conclude that the previously described microbial NA superfamily extends to human sialidases. Strategies designed to therapeutically inhibit microbial NA may need to consider potential compromising effects on human sialidases, particularly those expressed in cells of the immune system. |
---|