Cargando…
Costs and benefits of omnivore-mediated plant protection: effects of plant-feeding on Salix growth more detrimental than expected
Predators can decrease herbivore damage to plants, and this is often assumed to be beneficial to plant growth/reproduction without actual quantification. Moreover, previous studies have been biased towards strict carnivores and neglected the role of omnivorous predators in prey-suppression. Here, we...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487851/ https://www.ncbi.nlm.nih.gov/pubmed/28509951 http://dx.doi.org/10.1007/s00442-017-3878-4 |
Sumario: | Predators can decrease herbivore damage to plants, and this is often assumed to be beneficial to plant growth/reproduction without actual quantification. Moreover, previous studies have been biased towards strict carnivores and neglected the role of omnivorous predators in prey-suppression. Here, we examined the costs (reduction in growth) and benefits (increase in growth) of enemy-mediated plant protection via the omnivorous (prey and plant-feeding) Orthotylus marginalis, relative to herbivory by a detrimental insect pest of Salix spp. plantations, the beetle Phratora vulgatissima. In a first experiment, we compared the cost of adult beetle versus omnivore nymph plant-feeding, and assessed the (non-) additive effects of the two types of damage. In a second experiment, we quantified the reduction in plant damage resulting from beetle-egg feeding by omnivorous nymphs and subsequent benefits to plants. We found that plant-feeding by omnivores negatively affected plant growth and this effect was similar to the cost imposed by beetle herbivory. Furthermore, simultaneous damage effects were additive and more detrimental than individual effects. While egg-predation by omnivore nymphs completely prevented beetle damage to plants, there was no difference in plant growth relative to only herbivore-damaged plants and growth was still reduced compared to control plants. Thus, despite herbivore suppression, there was no benefit to plant growth of omnivore-mediated plant protection and the negative effects of omnivore plant-feeding remained. These results are a first for an omnivorous enemy, and provide novel and timely insights on the underlying assumptions of tri-trophic associations and their use for biocontrol of insect pests. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00442-017-3878-4) contains supplementary material, which is available to authorized users. |
---|