Cargando…

A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel

In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems fo...

Descripción completa

Detalles Bibliográficos
Autor principal: Abdeljawad, Thabet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487966/
https://www.ncbi.nlm.nih.gov/pubmed/28680233
http://dx.doi.org/10.1186/s13660-017-1400-5
Descripción
Sumario:In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text] ) and Riemann ([Formula: see text] ) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order [Formula: see text] in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.