Cargando…

A Study of the Protective Properties of Iraqi Olive Leaves against Oxidation and Pathogenic Bacteria in Food Applications

There is an ancient and prodigious history of olive trees because of their nutritional, medicinal, and traditional uses. Intensive studies have been conducted on olive leaves because they have many positive and beneficial effects for human health. In this study, different solvents were used to exami...

Descripción completa

Detalles Bibliográficos
Autor principal: Altemimi, Ammar B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488014/
https://www.ncbi.nlm.nih.gov/pubmed/28513570
http://dx.doi.org/10.3390/antiox6020034
Descripción
Sumario:There is an ancient and prodigious history of olive trees because of their nutritional, medicinal, and traditional uses. Intensive studies have been conducted on olive leaves because they have many positive and beneficial effects for human health. In this study, different solvents were used to examine the olive leaves for their antioxidant and antimicrobial activities and their possible food applications. The obtained results showed that the amounts of phenolic compounds of the olive leaf were 190.44 ± 0.50, 173 ± 1.72, 147.78 ± 0.69, and 147.50 ± 0.05 mg gallic acid/g extracts using methanol, ethanol, diethyl ether, and hexanol, respectively. The statistical analysis revealed that there was a significant difference in the phenolic contents in terms of the used solvents. The stability of the olive leaves extraction was also studied and the results indicated that increasing the storage temperature could negatively affect and encourage the degradation of the phenolic compounds. Furthermore, the olive leaf extraction was applied to raw sheep meat slides at 0.5%, 1.5%, and 2.5% (w/v) in order to test its antioxidant and antimicrobial effects. The results obviously showed that the sample treated with 2.5% olive leaf extract had the significantly (p < 0.05) lowest Thiobarbituric Acid (TBA) values of 1.92 ± 0.12 (mg Malonaldehyde MDA/kg) throughout 12 days of cold storage. Moreover, the results showed that the sample, which was treated with 2.5% olive leaf extract, had low total bacterial count and total coliform bacteria (6.23 ± 0.05, 5.2 ± 0.35 log colony forming unit (CFU)/g, respectively) among the control, 0.5%, and 1.5% olive leaf treated samples throughout 12 days of storage. The phenolic extracts from the olive leaf extract had significant antioxidant and antimicrobial activities, which could be used as a source of potential antioxidant and antimicrobial agents.