Cargando…
The Reactive Sulfur Species Concept: 15 Years On
Fifteen years ago, in 2001, the concept of “Reactive Sulfur Species” or RSS was advocated as a working hypothesis. Since then various organic as well as inorganic RSS have attracted considerable interest and stimulated many new and often unexpected avenues in research and product development. During...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488018/ https://www.ncbi.nlm.nih.gov/pubmed/28545257 http://dx.doi.org/10.3390/antiox6020038 |
_version_ | 1783246572534890496 |
---|---|
author | Giles, Gregory I. Nasim, Muhammad Jawad Ali, Wesam Jacob, Claus |
author_facet | Giles, Gregory I. Nasim, Muhammad Jawad Ali, Wesam Jacob, Claus |
author_sort | Giles, Gregory I. |
collection | PubMed |
description | Fifteen years ago, in 2001, the concept of “Reactive Sulfur Species” or RSS was advocated as a working hypothesis. Since then various organic as well as inorganic RSS have attracted considerable interest and stimulated many new and often unexpected avenues in research and product development. During this time, it has become apparent that molecules with sulfur-containing functional groups are not just the passive “victims” of oxidative stress or simple conveyors of signals in cells, but can also be stressors in their own right, with pivotal roles in cellular function and homeostasis. Many “exotic” sulfur-based compounds, often of natural origin, have entered the fray in the context of nutrition, ageing, chemoprevention and therapy. In parallel, the field of inorganic RSS has come to the forefront of research, with short-lived yet metabolically important intermediates, such as various sulfur-nitrogen species and polysulfides (S(x)(2−)), playing important roles. Between 2003 and 2005 several breath-taking discoveries emerged characterising unusual sulfur redox states in biology, and since then the truly unique role of sulfur-dependent redox systems has become apparent. Following these discoveries, over the last decade a “hunt” and, more recently, mining for such modifications has begun—and still continues—often in conjunction with new, innovative and complex labelling and analytical methods to capture the (entire) sulfur “redoxome”. A key distinction for RSS is that, unlike oxygen or nitrogen, sulfur not only forms a plethora of specific reactive species, but sulfur also targets itself, as sulfur containing molecules, i.e., peptides, proteins and enzymes, preferentially react with RSS. Not surprisingly, today this sulfur-centred redox signalling and control inside the living cell is a burning issue, which has moved on from the predominantly thiol/disulfide biochemistry of the past to a complex labyrinth of interacting signalling and control pathways which involve various sulfur oxidation states, sulfur species and reactions. RSS are omnipresent and, in some instances, are even considered as the true bearers of redox control, perhaps being more important than the Reactive Oxygen Species (ROS) or Reactive Nitrogen Species (RNS) which for decades have dominated the redox field. In other(s) words, in 2017, sulfur redox is “on the rise”, and the idea of RSS resonates throughout the Life Sciences. Still, the RSS story isn’t over yet. Many RSS are at the heart of “mistaken identities” which urgently require clarification and may even provide the foundations for further scientific revolutions in the years to come. In light of these developments, it is therefore the perfect time to revisit the original hypotheses, to select highlights in the field and to question and eventually update our concept of “Reactive Sulfur Species”. |
format | Online Article Text |
id | pubmed-5488018 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54880182017-06-29 The Reactive Sulfur Species Concept: 15 Years On Giles, Gregory I. Nasim, Muhammad Jawad Ali, Wesam Jacob, Claus Antioxidants (Basel) Review Fifteen years ago, in 2001, the concept of “Reactive Sulfur Species” or RSS was advocated as a working hypothesis. Since then various organic as well as inorganic RSS have attracted considerable interest and stimulated many new and often unexpected avenues in research and product development. During this time, it has become apparent that molecules with sulfur-containing functional groups are not just the passive “victims” of oxidative stress or simple conveyors of signals in cells, but can also be stressors in their own right, with pivotal roles in cellular function and homeostasis. Many “exotic” sulfur-based compounds, often of natural origin, have entered the fray in the context of nutrition, ageing, chemoprevention and therapy. In parallel, the field of inorganic RSS has come to the forefront of research, with short-lived yet metabolically important intermediates, such as various sulfur-nitrogen species and polysulfides (S(x)(2−)), playing important roles. Between 2003 and 2005 several breath-taking discoveries emerged characterising unusual sulfur redox states in biology, and since then the truly unique role of sulfur-dependent redox systems has become apparent. Following these discoveries, over the last decade a “hunt” and, more recently, mining for such modifications has begun—and still continues—often in conjunction with new, innovative and complex labelling and analytical methods to capture the (entire) sulfur “redoxome”. A key distinction for RSS is that, unlike oxygen or nitrogen, sulfur not only forms a plethora of specific reactive species, but sulfur also targets itself, as sulfur containing molecules, i.e., peptides, proteins and enzymes, preferentially react with RSS. Not surprisingly, today this sulfur-centred redox signalling and control inside the living cell is a burning issue, which has moved on from the predominantly thiol/disulfide biochemistry of the past to a complex labyrinth of interacting signalling and control pathways which involve various sulfur oxidation states, sulfur species and reactions. RSS are omnipresent and, in some instances, are even considered as the true bearers of redox control, perhaps being more important than the Reactive Oxygen Species (ROS) or Reactive Nitrogen Species (RNS) which for decades have dominated the redox field. In other(s) words, in 2017, sulfur redox is “on the rise”, and the idea of RSS resonates throughout the Life Sciences. Still, the RSS story isn’t over yet. Many RSS are at the heart of “mistaken identities” which urgently require clarification and may even provide the foundations for further scientific revolutions in the years to come. In light of these developments, it is therefore the perfect time to revisit the original hypotheses, to select highlights in the field and to question and eventually update our concept of “Reactive Sulfur Species”. MDPI 2017-05-23 /pmc/articles/PMC5488018/ /pubmed/28545257 http://dx.doi.org/10.3390/antiox6020038 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Giles, Gregory I. Nasim, Muhammad Jawad Ali, Wesam Jacob, Claus The Reactive Sulfur Species Concept: 15 Years On |
title | The Reactive Sulfur Species Concept: 15 Years On |
title_full | The Reactive Sulfur Species Concept: 15 Years On |
title_fullStr | The Reactive Sulfur Species Concept: 15 Years On |
title_full_unstemmed | The Reactive Sulfur Species Concept: 15 Years On |
title_short | The Reactive Sulfur Species Concept: 15 Years On |
title_sort | reactive sulfur species concept: 15 years on |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488018/ https://www.ncbi.nlm.nih.gov/pubmed/28545257 http://dx.doi.org/10.3390/antiox6020038 |
work_keys_str_mv | AT gilesgregoryi thereactivesulfurspeciesconcept15yearson AT nasimmuhammadjawad thereactivesulfurspeciesconcept15yearson AT aliwesam thereactivesulfurspeciesconcept15yearson AT jacobclaus thereactivesulfurspeciesconcept15yearson AT gilesgregoryi reactivesulfurspeciesconcept15yearson AT nasimmuhammadjawad reactivesulfurspeciesconcept15yearson AT aliwesam reactivesulfurspeciesconcept15yearson AT jacobclaus reactivesulfurspeciesconcept15yearson |