Cargando…

A nonconforming scheme for non-Fickian flow in porous media

In this paper, we construct a semi-discrete scheme and a fully discrete scheme using the Wilson nonconforming element for the parabolic integro-differential equation arising in modeling the non-Fickian flow in porous media by the interior penalty method. Without using the conventional elliptic proje...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Peizhen, Jiang, Liying, Chen, Shaochun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488024/
https://www.ncbi.nlm.nih.gov/pubmed/28680245
http://dx.doi.org/10.1186/s13660-017-1419-7
_version_ 1783246573986119680
author Wang, Peizhen
Jiang, Liying
Chen, Shaochun
author_facet Wang, Peizhen
Jiang, Liying
Chen, Shaochun
author_sort Wang, Peizhen
collection PubMed
description In this paper, we construct a semi-discrete scheme and a fully discrete scheme using the Wilson nonconforming element for the parabolic integro-differential equation arising in modeling the non-Fickian flow in porous media by the interior penalty method. Without using the conventional elliptic projection, which was an indispensable tool in the convergence analysis of finite element methods in previous literature, we get an optimal error estimate which is only determined by the interpolation error. Finally, we give some numerical experiments to show the efficiency of the method.
format Online
Article
Text
id pubmed-5488024
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-54880242017-07-03 A nonconforming scheme for non-Fickian flow in porous media Wang, Peizhen Jiang, Liying Chen, Shaochun J Inequal Appl Research In this paper, we construct a semi-discrete scheme and a fully discrete scheme using the Wilson nonconforming element for the parabolic integro-differential equation arising in modeling the non-Fickian flow in porous media by the interior penalty method. Without using the conventional elliptic projection, which was an indispensable tool in the convergence analysis of finite element methods in previous literature, we get an optimal error estimate which is only determined by the interpolation error. Finally, we give some numerical experiments to show the efficiency of the method. Springer International Publishing 2017-06-19 2017 /pmc/articles/PMC5488024/ /pubmed/28680245 http://dx.doi.org/10.1186/s13660-017-1419-7 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Wang, Peizhen
Jiang, Liying
Chen, Shaochun
A nonconforming scheme for non-Fickian flow in porous media
title A nonconforming scheme for non-Fickian flow in porous media
title_full A nonconforming scheme for non-Fickian flow in porous media
title_fullStr A nonconforming scheme for non-Fickian flow in porous media
title_full_unstemmed A nonconforming scheme for non-Fickian flow in porous media
title_short A nonconforming scheme for non-Fickian flow in porous media
title_sort nonconforming scheme for non-fickian flow in porous media
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488024/
https://www.ncbi.nlm.nih.gov/pubmed/28680245
http://dx.doi.org/10.1186/s13660-017-1419-7
work_keys_str_mv AT wangpeizhen anonconformingschemefornonfickianflowinporousmedia
AT jiangliying anonconformingschemefornonfickianflowinporousmedia
AT chenshaochun anonconformingschemefornonfickianflowinporousmedia
AT wangpeizhen nonconformingschemefornonfickianflowinporousmedia
AT jiangliying nonconformingschemefornonfickianflowinporousmedia
AT chenshaochun nonconformingschemefornonfickianflowinporousmedia