Cargando…
Identification of G-quadruplex structures that possess transcriptional regulating functions in the Dele and Cdc6 CpG islands
BACKGROUND: G-quadruplex is a DNA secondary structure that has been shown to play an important role in biological systems. In a previous study, we identified 1998 G-quadruplex-forming sequences using a mouse CpG islands DNA microarray with a fluorescent-labeled G-quadruplex ligand. Among these putat...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488298/ https://www.ncbi.nlm.nih.gov/pubmed/28655335 http://dx.doi.org/10.1186/s12867-017-0094-z |
Sumario: | BACKGROUND: G-quadruplex is a DNA secondary structure that has been shown to play an important role in biological systems. In a previous study, we identified 1998 G-quadruplex-forming sequences using a mouse CpG islands DNA microarray with a fluorescent-labeled G-quadruplex ligand. Among these putative G-quadruplex-forming sequences, G-quadruplex formation was verified for 10 randomly selected sequences by CD spectroscopy and DMS footprinting analysis. In this study, the biological function of the 10 G-quadruplex-forming sequences in the transcriptional regulation has been analyzed using a reporter assay. RESULTS: When G-quadruplex-forming sequences from the Dele and Cdc6 genes have been cloned in reporter vectors carrying a minimal promoter and the luciferase gene, luciferase expression is activated. This has also been detected in experiments applying a promoterless reporter vector. Mutational analysis reveals that guanine bases, which form the G-tetrads, are important in the activation. In addition, the activation has been found to decrease by the telomestatin derivative L1H1-7OTD which can bind to the G-quadruplex DNA. When Dele and Cdc6 CpG islands, containing the G-quadruplex-forming sequence, have been cloned in the promoterless reporter vector, the luciferase expression is activated. Mutational analysis reveals that the expression level is decreased by mutation on Dele G-quadruplex; however, increased by mutation on Cdc6 G-quadruplex. CONCLUSION: Dele and Cdc6 G-quadruplex formation is significant in the transcriptional regulation. Dele and Cdc6 G-quadruplex DNA alone possess enhancer and promotor function. When studied in more complex CpG islands Dele G-quadruplex also demonstrates promotor activity, whereas Cdc6 G-quadruplex may possess a dual function of transcriptional regulation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12867-017-0094-z) contains supplementary material, which is available to authorized users. |
---|