Cargando…

Overexpression of long non-coding RNA zinc finger antisense 1 in acute myeloid leukemia cell lines influences cell growth and apoptosis

The association between long non-coding RNA zinc finger antisense 1 (ZFAS1) and acute myeloid leukemia (AML) has not yet been investigated. The present study aimed to assess the potential role of ZFAS1 in AML cell proliferation and apoptosis. The expression of ZFAS1 mRNA in various AML cell lines (H...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Haifei, Wu, Lili, Zhao, Pu, Feng, Aimei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488414/
https://www.ncbi.nlm.nih.gov/pubmed/28672980
http://dx.doi.org/10.3892/etm.2017.4535
Descripción
Sumario:The association between long non-coding RNA zinc finger antisense 1 (ZFAS1) and acute myeloid leukemia (AML) has not yet been investigated. The present study aimed to assess the potential role of ZFAS1 in AML cell proliferation and apoptosis. The expression of ZFAS1 mRNA in various AML cell lines (HL-60, KG-1, ML-1 and SKNO-1) was measured by reverse transcription-quantitative polymerase chain reaction. The results showed that ZFAS1 expression was increased in all four human AML cell lines compared with the control cell lines (T lymphocytic leukemia or Burkitt's lymphoma). Transfection with small interfering RNA into human AML cells established ZFAS1 knockdown. A cell-counting kit-8 (CCK-8) assay was used to investigate the effect of ZFAS1 on AML cell proliferation and the effect of ZFAS1 on the cell cycle and cell apoptosis was assessed using flow cytometry. Notably, the CCK-8 assay demonstrated that ZFAS1 knockdown inhibited cell proliferation in HL-60 and SKNO-1 cell lines and flow cytometry analysis indicated that ZFAS1 knockdown induced AML cell cycle G1 phase arrest and triggered cell apoptosis. Therefore, the present study indicated that ZFAS1 promoted the proliferation and inhibited the apoptosis of AML cells.