Cargando…
Cell Detection Using Extremal Regions in a Semisupervised Learning Framework
This paper discusses an algorithm to build a semisupervised learning framework for detecting cells. The cell candidates are represented as extremal regions drawn from a hierarchical image representation. Training a classifier for cell detection using supervised approaches relies on a large amount of...
Autores principales: | Ramesh, Nisha, Liu, Ting, Tasdizen, Tolga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488495/ https://www.ncbi.nlm.nih.gov/pubmed/29065596 http://dx.doi.org/10.1155/2017/4080874 |
Ejemplares similares
-
mokapot: Fast
and Flexible Semisupervised Learning
for Peptide Detection
por: Fondrie, William E., et al.
Publicado: (2021) -
Online Coregularization for Multiview Semisupervised Learning
por: Sun, Boliang, et al.
Publicado: (2013) -
Self-Trained LMT for Semisupervised Learning
por: Fazakis, Nikos, et al.
Publicado: (2016) -
Semisupervised Semantic Segmentation with Mutual Correction Learning
por: Xiao, Yifan, et al.
Publicado: (2022) -
Isolation and two-step classification of normal white blood cells in peripheral blood smears
por: Ramesh, Nisha, et al.
Publicado: (2012)