Cargando…

Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4, and Sox2 through the activation of the Hippo-Yap pathway

The present study has reported a novel method for producing induced pluripotent stem (iPS) cells. Primary human amniotic epithelial cells (HuAECs) were isolated from the amniotic membranes of pregnant women who received Cesarean sections. These cells were infected with retroviruses carrying octamer-...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yanhui, Fei, Xinfeng, Guo, Jianming, Zou, Gang, Pan, Weidong, Zhang, Jingju, Huang, Yongyi, Liu, Te, Cheng, Weiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488545/
https://www.ncbi.nlm.nih.gov/pubmed/28672915
http://dx.doi.org/10.3892/etm.2017.4512
_version_ 1783246678379200512
author Zhao, Yanhui
Fei, Xinfeng
Guo, Jianming
Zou, Gang
Pan, Weidong
Zhang, Jingju
Huang, Yongyi
Liu, Te
Cheng, Weiwei
author_facet Zhao, Yanhui
Fei, Xinfeng
Guo, Jianming
Zou, Gang
Pan, Weidong
Zhang, Jingju
Huang, Yongyi
Liu, Te
Cheng, Weiwei
author_sort Zhao, Yanhui
collection PubMed
description The present study has reported a novel method for producing induced pluripotent stem (iPS) cells. Primary human amniotic epithelial cells (HuAECs) were isolated from the amniotic membranes of pregnant women who received Cesarean sections. These cells were infected with retroviruses carrying octamer-binding transcription factor 4 (Oct4), (sex determining region Y)-box 2 (Sox2) and Yes-associated protein (Yap) (OSY). Following in vitro culture for ~14 days, epithelial-like HuAECs exhibited several iPS clone-like cell colonies (OSY-iPS). These cell clones presented positive alkaline phosphatase features and expressed high levels of embryonic stem cell-like markers (Nanog homeobox, Sox2, Oct4, reduced expression protein 1, and SSES3/4). Additionally, epigenetic analysis results indicated that the methylation of CpG islands on endogenous Oct4 and Sox2 promoters was reduced in OSY-iPS cells. Furthermore, the majority of the histone H3 at lysine 9 sites that interacted with the Oct4 and Sox2 promoters were acetylated, suggesting that the transcription activities of the above two transcription factors significantly increased. In vivo and in vitro induced differentiation experiments demonstrated that OSY-iPS could develop into embryoid bodies in vitro, and express numerous cellular markers in the three germ layers. Furthermore, OSY-iPS could form teratomas in immunodeficient mice. The pathological detection results suggest that these teratomas contain numerous types of cells from the three germ layers. However, the results from the quantitative polymerase chain reaction and western blot analyses suggest that the Hippo-Yap signaling pathway was significantly activated in OSY-iPS cells. In conclusion, a novel method for iPS induction was established in the present study. HuAECs were successfully induced to reprogram iPS cells through the introduction of OSY to activate the Hippo-Yap signaling pathway.
format Online
Article
Text
id pubmed-5488545
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-54885452017-06-30 Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4, and Sox2 through the activation of the Hippo-Yap pathway Zhao, Yanhui Fei, Xinfeng Guo, Jianming Zou, Gang Pan, Weidong Zhang, Jingju Huang, Yongyi Liu, Te Cheng, Weiwei Exp Ther Med Articles The present study has reported a novel method for producing induced pluripotent stem (iPS) cells. Primary human amniotic epithelial cells (HuAECs) were isolated from the amniotic membranes of pregnant women who received Cesarean sections. These cells were infected with retroviruses carrying octamer-binding transcription factor 4 (Oct4), (sex determining region Y)-box 2 (Sox2) and Yes-associated protein (Yap) (OSY). Following in vitro culture for ~14 days, epithelial-like HuAECs exhibited several iPS clone-like cell colonies (OSY-iPS). These cell clones presented positive alkaline phosphatase features and expressed high levels of embryonic stem cell-like markers (Nanog homeobox, Sox2, Oct4, reduced expression protein 1, and SSES3/4). Additionally, epigenetic analysis results indicated that the methylation of CpG islands on endogenous Oct4 and Sox2 promoters was reduced in OSY-iPS cells. Furthermore, the majority of the histone H3 at lysine 9 sites that interacted with the Oct4 and Sox2 promoters were acetylated, suggesting that the transcription activities of the above two transcription factors significantly increased. In vivo and in vitro induced differentiation experiments demonstrated that OSY-iPS could develop into embryoid bodies in vitro, and express numerous cellular markers in the three germ layers. Furthermore, OSY-iPS could form teratomas in immunodeficient mice. The pathological detection results suggest that these teratomas contain numerous types of cells from the three germ layers. However, the results from the quantitative polymerase chain reaction and western blot analyses suggest that the Hippo-Yap signaling pathway was significantly activated in OSY-iPS cells. In conclusion, a novel method for iPS induction was established in the present study. HuAECs were successfully induced to reprogram iPS cells through the introduction of OSY to activate the Hippo-Yap signaling pathway. D.A. Spandidos 2017-07 2017-05-24 /pmc/articles/PMC5488545/ /pubmed/28672915 http://dx.doi.org/10.3892/etm.2017.4512 Text en Copyright: © Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Zhao, Yanhui
Fei, Xinfeng
Guo, Jianming
Zou, Gang
Pan, Weidong
Zhang, Jingju
Huang, Yongyi
Liu, Te
Cheng, Weiwei
Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4, and Sox2 through the activation of the Hippo-Yap pathway
title Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4, and Sox2 through the activation of the Hippo-Yap pathway
title_full Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4, and Sox2 through the activation of the Hippo-Yap pathway
title_fullStr Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4, and Sox2 through the activation of the Hippo-Yap pathway
title_full_unstemmed Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4, and Sox2 through the activation of the Hippo-Yap pathway
title_short Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4, and Sox2 through the activation of the Hippo-Yap pathway
title_sort induction of reprogramming of human amniotic epithelial cells into ips cells by overexpression of yap, oct4, and sox2 through the activation of the hippo-yap pathway
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488545/
https://www.ncbi.nlm.nih.gov/pubmed/28672915
http://dx.doi.org/10.3892/etm.2017.4512
work_keys_str_mv AT zhaoyanhui inductionofreprogrammingofhumanamnioticepithelialcellsintoipscellsbyoverexpressionofyapoct4andsox2throughtheactivationofthehippoyappathway
AT feixinfeng inductionofreprogrammingofhumanamnioticepithelialcellsintoipscellsbyoverexpressionofyapoct4andsox2throughtheactivationofthehippoyappathway
AT guojianming inductionofreprogrammingofhumanamnioticepithelialcellsintoipscellsbyoverexpressionofyapoct4andsox2throughtheactivationofthehippoyappathway
AT zougang inductionofreprogrammingofhumanamnioticepithelialcellsintoipscellsbyoverexpressionofyapoct4andsox2throughtheactivationofthehippoyappathway
AT panweidong inductionofreprogrammingofhumanamnioticepithelialcellsintoipscellsbyoverexpressionofyapoct4andsox2throughtheactivationofthehippoyappathway
AT zhangjingju inductionofreprogrammingofhumanamnioticepithelialcellsintoipscellsbyoverexpressionofyapoct4andsox2throughtheactivationofthehippoyappathway
AT huangyongyi inductionofreprogrammingofhumanamnioticepithelialcellsintoipscellsbyoverexpressionofyapoct4andsox2throughtheactivationofthehippoyappathway
AT liute inductionofreprogrammingofhumanamnioticepithelialcellsintoipscellsbyoverexpressionofyapoct4andsox2throughtheactivationofthehippoyappathway
AT chengweiwei inductionofreprogrammingofhumanamnioticepithelialcellsintoipscellsbyoverexpressionofyapoct4andsox2throughtheactivationofthehippoyappathway