Cargando…

A high spatial resolution synchrotron Mössbauer study of the Tazewell IIICD and Esquel pallasite meteorites

Metallic phases in the Tazewell IIICD iron and Esquel pallasite meteorites were examined using (57)Fe synchrotron Mössbauer spectroscopy. Spatial resolution of ~10–20 μm was achieved, together with high throughput, enabling individual spectra to be recorded in less than 1 h. Spectra were recorded ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Blukis, Roberts, Rüffer, Rudolf, Chumakov, Aleksandr I., Harrison, Richard J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488627/
https://www.ncbi.nlm.nih.gov/pubmed/28713215
http://dx.doi.org/10.1111/maps.12841
Descripción
Sumario:Metallic phases in the Tazewell IIICD iron and Esquel pallasite meteorites were examined using (57)Fe synchrotron Mössbauer spectroscopy. Spatial resolution of ~10–20 μm was achieved, together with high throughput, enabling individual spectra to be recorded in less than 1 h. Spectra were recorded every 5–10 μm, allowing phase fractions and hyperfine parameters to be traced along transects of key microstructural features. The main focus of the study was the transitional region between kamacite and plessite, known as the “cloudy zone.” Results confirm the presence of tetrataenite and antitaenite in the cloudy zone as its only components. However, both phases were also found in plessite, indicating that antitaenite is not restricted exclusively to the cloudy zone, as previously thought. The confirmation of paramagnetic antitaenite as the matrix phase of the cloudy zone contrasts with recent observations of a ferromagnetic matrix phase using X‐ray photoemission electron spectroscopy. Possible explanations for the different results seen using these techniques are proposed.