Cargando…
Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection
Immune cells sense and react to a multitude of factors including both host and microbe-derived signals. Understanding how cells translate these cues into particular cellular behaviors is a complex yet critical area of study. We have previously shown that both neutrophils and macrophages are importan...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489177/ https://www.ncbi.nlm.nih.gov/pubmed/28658259 http://dx.doi.org/10.1371/journal.pone.0179574 |
_version_ | 1783246759359676416 |
---|---|
author | Vincent, William J. B. Harvie, Elizabeth A. Sauer, John-Demian Huttenlocher, Anna |
author_facet | Vincent, William J. B. Harvie, Elizabeth A. Sauer, John-Demian Huttenlocher, Anna |
author_sort | Vincent, William J. B. |
collection | PubMed |
description | Immune cells sense and react to a multitude of factors including both host and microbe-derived signals. Understanding how cells translate these cues into particular cellular behaviors is a complex yet critical area of study. We have previously shown that both neutrophils and macrophages are important for controlling the fish pathogen Streptococcus iniae. Here, we report both host and bacterial determinants leading to the formation of organized macrophage aggregates as part of the host inflammatory response in a subset of infected larvae. Streptococcal capsule was a required signal for aggregate formation. Macrophage aggregation coincided with NFκB activity, and the formation of these aggregates is mediated by leukotriene B4 (LTB4) produced by neutrophils. Depletion, inhibition, or genetic deletion of leukotriene A4 hydrolase (Lta4h), which catalyzes the last step in LTB4 synthesis, resulted in the absence of macrophage aggregation. Larvae with impaired neutrophil function also had impaired macrophage aggregation; however, aggregate formation was partially rescued with the addition of exogenous LTB4. Neutrophil-specific expression of lta4h was sufficient to rescue macrophage aggregation in Lta4h-deficient larvae and increased host survival following infection. In summary, our findings highlight a novel innate immune response to infection in which specific bacterial products drive neutrophils that modulate macrophage behavior through eicosanoid signaling. |
format | Online Article Text |
id | pubmed-5489177 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54891772017-07-11 Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection Vincent, William J. B. Harvie, Elizabeth A. Sauer, John-Demian Huttenlocher, Anna PLoS One Research Article Immune cells sense and react to a multitude of factors including both host and microbe-derived signals. Understanding how cells translate these cues into particular cellular behaviors is a complex yet critical area of study. We have previously shown that both neutrophils and macrophages are important for controlling the fish pathogen Streptococcus iniae. Here, we report both host and bacterial determinants leading to the formation of organized macrophage aggregates as part of the host inflammatory response in a subset of infected larvae. Streptococcal capsule was a required signal for aggregate formation. Macrophage aggregation coincided with NFκB activity, and the formation of these aggregates is mediated by leukotriene B4 (LTB4) produced by neutrophils. Depletion, inhibition, or genetic deletion of leukotriene A4 hydrolase (Lta4h), which catalyzes the last step in LTB4 synthesis, resulted in the absence of macrophage aggregation. Larvae with impaired neutrophil function also had impaired macrophage aggregation; however, aggregate formation was partially rescued with the addition of exogenous LTB4. Neutrophil-specific expression of lta4h was sufficient to rescue macrophage aggregation in Lta4h-deficient larvae and increased host survival following infection. In summary, our findings highlight a novel innate immune response to infection in which specific bacterial products drive neutrophils that modulate macrophage behavior through eicosanoid signaling. Public Library of Science 2017-06-28 /pmc/articles/PMC5489177/ /pubmed/28658259 http://dx.doi.org/10.1371/journal.pone.0179574 Text en © 2017 Vincent et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Vincent, William J. B. Harvie, Elizabeth A. Sauer, John-Demian Huttenlocher, Anna Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection |
title | Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection |
title_full | Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection |
title_fullStr | Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection |
title_full_unstemmed | Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection |
title_short | Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection |
title_sort | neutrophil derived ltb4 induces macrophage aggregation in response to encapsulated streptococcus iniae infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489177/ https://www.ncbi.nlm.nih.gov/pubmed/28658259 http://dx.doi.org/10.1371/journal.pone.0179574 |
work_keys_str_mv | AT vincentwilliamjb neutrophilderivedltb4inducesmacrophageaggregationinresponsetoencapsulatedstreptococcusiniaeinfection AT harvieelizabetha neutrophilderivedltb4inducesmacrophageaggregationinresponsetoencapsulatedstreptococcusiniaeinfection AT sauerjohndemian neutrophilderivedltb4inducesmacrophageaggregationinresponsetoencapsulatedstreptococcusiniaeinfection AT huttenlocheranna neutrophilderivedltb4inducesmacrophageaggregationinresponsetoencapsulatedstreptococcusiniaeinfection |