Cargando…

Hand classification of fMRI ICA noise components

We present a practical “how-to” guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check...

Descripción completa

Detalles Bibliográficos
Autores principales: Griffanti, Ludovica, Douaud, Gwenaëlle, Bijsterbosch, Janine, Evangelisti, Stefania, Alfaro-Almagro, Fidel, Glasser, Matthew F., Duff, Eugene P., Fitzgibbon, Sean, Westphal, Robert, Carone, Davide, Beckmann, Christian F., Smith, Stephen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489418/
https://www.ncbi.nlm.nih.gov/pubmed/27989777
http://dx.doi.org/10.1016/j.neuroimage.2016.12.036
_version_ 1783246783659376640
author Griffanti, Ludovica
Douaud, Gwenaëlle
Bijsterbosch, Janine
Evangelisti, Stefania
Alfaro-Almagro, Fidel
Glasser, Matthew F.
Duff, Eugene P.
Fitzgibbon, Sean
Westphal, Robert
Carone, Davide
Beckmann, Christian F.
Smith, Stephen M.
author_facet Griffanti, Ludovica
Douaud, Gwenaëlle
Bijsterbosch, Janine
Evangelisti, Stefania
Alfaro-Almagro, Fidel
Glasser, Matthew F.
Duff, Eugene P.
Fitzgibbon, Sean
Westphal, Robert
Carone, Davide
Beckmann, Christian F.
Smith, Stephen M.
author_sort Griffanti, Ludovica
collection PubMed
description We present a practical “how-to” guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets.
format Online
Article
Text
id pubmed-5489418
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-54894182017-07-12 Hand classification of fMRI ICA noise components Griffanti, Ludovica Douaud, Gwenaëlle Bijsterbosch, Janine Evangelisti, Stefania Alfaro-Almagro, Fidel Glasser, Matthew F. Duff, Eugene P. Fitzgibbon, Sean Westphal, Robert Carone, Davide Beckmann, Christian F. Smith, Stephen M. Neuroimage Article We present a practical “how-to” guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets. Academic Press 2017-07-01 /pmc/articles/PMC5489418/ /pubmed/27989777 http://dx.doi.org/10.1016/j.neuroimage.2016.12.036 Text en © 2016 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Griffanti, Ludovica
Douaud, Gwenaëlle
Bijsterbosch, Janine
Evangelisti, Stefania
Alfaro-Almagro, Fidel
Glasser, Matthew F.
Duff, Eugene P.
Fitzgibbon, Sean
Westphal, Robert
Carone, Davide
Beckmann, Christian F.
Smith, Stephen M.
Hand classification of fMRI ICA noise components
title Hand classification of fMRI ICA noise components
title_full Hand classification of fMRI ICA noise components
title_fullStr Hand classification of fMRI ICA noise components
title_full_unstemmed Hand classification of fMRI ICA noise components
title_short Hand classification of fMRI ICA noise components
title_sort hand classification of fmri ica noise components
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489418/
https://www.ncbi.nlm.nih.gov/pubmed/27989777
http://dx.doi.org/10.1016/j.neuroimage.2016.12.036
work_keys_str_mv AT griffantiludovica handclassificationoffmriicanoisecomponents
AT douaudgwenaelle handclassificationoffmriicanoisecomponents
AT bijsterboschjanine handclassificationoffmriicanoisecomponents
AT evangelististefania handclassificationoffmriicanoisecomponents
AT alfaroalmagrofidel handclassificationoffmriicanoisecomponents
AT glassermatthewf handclassificationoffmriicanoisecomponents
AT duffeugenep handclassificationoffmriicanoisecomponents
AT fitzgibbonsean handclassificationoffmriicanoisecomponents
AT westphalrobert handclassificationoffmriicanoisecomponents
AT caronedavide handclassificationoffmriicanoisecomponents
AT beckmannchristianf handclassificationoffmriicanoisecomponents
AT smithstephenm handclassificationoffmriicanoisecomponents