Cargando…
Hand classification of fMRI ICA noise components
We present a practical “how-to” guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489418/ https://www.ncbi.nlm.nih.gov/pubmed/27989777 http://dx.doi.org/10.1016/j.neuroimage.2016.12.036 |
_version_ | 1783246783659376640 |
---|---|
author | Griffanti, Ludovica Douaud, Gwenaëlle Bijsterbosch, Janine Evangelisti, Stefania Alfaro-Almagro, Fidel Glasser, Matthew F. Duff, Eugene P. Fitzgibbon, Sean Westphal, Robert Carone, Davide Beckmann, Christian F. Smith, Stephen M. |
author_facet | Griffanti, Ludovica Douaud, Gwenaëlle Bijsterbosch, Janine Evangelisti, Stefania Alfaro-Almagro, Fidel Glasser, Matthew F. Duff, Eugene P. Fitzgibbon, Sean Westphal, Robert Carone, Davide Beckmann, Christian F. Smith, Stephen M. |
author_sort | Griffanti, Ludovica |
collection | PubMed |
description | We present a practical “how-to” guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets. |
format | Online Article Text |
id | pubmed-5489418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-54894182017-07-12 Hand classification of fMRI ICA noise components Griffanti, Ludovica Douaud, Gwenaëlle Bijsterbosch, Janine Evangelisti, Stefania Alfaro-Almagro, Fidel Glasser, Matthew F. Duff, Eugene P. Fitzgibbon, Sean Westphal, Robert Carone, Davide Beckmann, Christian F. Smith, Stephen M. Neuroimage Article We present a practical “how-to” guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets. Academic Press 2017-07-01 /pmc/articles/PMC5489418/ /pubmed/27989777 http://dx.doi.org/10.1016/j.neuroimage.2016.12.036 Text en © 2016 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Griffanti, Ludovica Douaud, Gwenaëlle Bijsterbosch, Janine Evangelisti, Stefania Alfaro-Almagro, Fidel Glasser, Matthew F. Duff, Eugene P. Fitzgibbon, Sean Westphal, Robert Carone, Davide Beckmann, Christian F. Smith, Stephen M. Hand classification of fMRI ICA noise components |
title | Hand classification of fMRI ICA noise components |
title_full | Hand classification of fMRI ICA noise components |
title_fullStr | Hand classification of fMRI ICA noise components |
title_full_unstemmed | Hand classification of fMRI ICA noise components |
title_short | Hand classification of fMRI ICA noise components |
title_sort | hand classification of fmri ica noise components |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489418/ https://www.ncbi.nlm.nih.gov/pubmed/27989777 http://dx.doi.org/10.1016/j.neuroimage.2016.12.036 |
work_keys_str_mv | AT griffantiludovica handclassificationoffmriicanoisecomponents AT douaudgwenaelle handclassificationoffmriicanoisecomponents AT bijsterboschjanine handclassificationoffmriicanoisecomponents AT evangelististefania handclassificationoffmriicanoisecomponents AT alfaroalmagrofidel handclassificationoffmriicanoisecomponents AT glassermatthewf handclassificationoffmriicanoisecomponents AT duffeugenep handclassificationoffmriicanoisecomponents AT fitzgibbonsean handclassificationoffmriicanoisecomponents AT westphalrobert handclassificationoffmriicanoisecomponents AT caronedavide handclassificationoffmriicanoisecomponents AT beckmannchristianf handclassificationoffmriicanoisecomponents AT smithstephenm handclassificationoffmriicanoisecomponents |