Cargando…
Hand classification of fMRI ICA noise components
We present a practical “how-to” guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check...
Autores principales: | Griffanti, Ludovica, Douaud, Gwenaëlle, Bijsterbosch, Janine, Evangelisti, Stefania, Alfaro-Almagro, Fidel, Glasser, Matthew F., Duff, Eugene P., Fitzgibbon, Sean, Westphal, Robert, Carone, Davide, Beckmann, Christian F., Smith, Stephen M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489418/ https://www.ncbi.nlm.nih.gov/pubmed/27989777 http://dx.doi.org/10.1016/j.neuroimage.2016.12.036 |
Ejemplares similares
-
Impact of automated ICA-based denoising of fMRI data in acute stroke patients
por: Carone, D., et al.
Publicado: (2017) -
Investigations into within- and between-subject resting-state amplitude variations
por: Bijsterbosch, Janine, et al.
Publicado: (2017) -
ICA-based denoising for ASL perfusion imaging
por: Carone, D., et al.
Publicado: (2019) -
ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI
por: Feis, Rogier A., et al.
Publicado: (2015) -
An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank
por: Smith, Stephen M, et al.
Publicado: (2021)