Cargando…
Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data
BACKGROUND: In recent years, research in artificial neural networks has resurged, now under the deep-learning umbrella, and grown extremely popular. Recently reported success of DL techniques in crowd-sourced QSAR and predictive toxicology competitions has showcased these methods as powerful tools i...
Autores principales: | Koutsoukas, Alexios, Monaghan, Keith J., Li, Xiaoli, Huan, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489441/ https://www.ncbi.nlm.nih.gov/pubmed/29086090 http://dx.doi.org/10.1186/s13321-017-0226-y |
Ejemplares similares
-
An Empirical Investigation Into Deep and Shallow Rule Learning
por: Beck, Florian, et al.
Publicado: (2021) -
Effect of hyper-parameters on the performance of ConvLSTM based deep neural network in crop classification
por: Durrani, Awab ur Rashid, et al.
Publicado: (2023) -
Efficient shallow learning as an alternative to deep learning
por: Meir, Yuval, et al.
Publicado: (2023) -
From shallow to deep knowledge
por: De Swaan-Arons, H
Publicado: (1987) -
The nature of thinking, shallow and deep
por: Brase, Gary L.
Publicado: (2014)