Cargando…
The dual DPP4 inhibitor and GPR119 agonist HBK001 regulates glycemic control and beta cell function ex and in vivo
Glucagon like peptide-1 (GLP-1) plays a vital role in glucose homeostasis and sustaining β-cell function. Currently there are two major methods to enhance endogenous GLP-1 activity; inhibiting dipeptidyl peptidase-4 (DPP4) or activating G protein-coupled receptor 119 (GPR119). Here we describe and v...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489512/ https://www.ncbi.nlm.nih.gov/pubmed/28659588 http://dx.doi.org/10.1038/s41598-017-04633-5 |
Sumario: | Glucagon like peptide-1 (GLP-1) plays a vital role in glucose homeostasis and sustaining β-cell function. Currently there are two major methods to enhance endogenous GLP-1 activity; inhibiting dipeptidyl peptidase-4 (DPP4) or activating G protein-coupled receptor 119 (GPR119). Here we describe and validate a novel dual-target compound, HBK001, which can both inhibit DPP4 and activate GPR119 ex and in vivo. We show that HBK001 can promote glucose-stimulated insulin secretion in mouse and human primary islets. A single administration of HBK001 in ICR mice can increase plasma incretins levels much more efficiently than linagliptin, a classic DPP4 inhibitor. Long-term treatment of HBK001 in KKAy mice can ameliorate hyperglycemia as well as improve glucose tolerance, while linagliptin fails to achieve such glucose-lowing effects despite inhibiting 95% of serum DPP4 activity. Moreover, HBK001 can increase first-phase insulin secretion in KKAy mice, suggesting a direct effect on islet β-cells via GPR119 activation. Furthermore, HBK001 can improve islet morphology, increase β-cell proliferation and up-regulate genes involved in improved β-cell function. Thus, we have identified, designed and synthesized a novel dual-target compound, HBK001, which represents a promising therapeutic candidate for type 2 diabetes, especially for patients who are insensitive to current DPP4 inhibitors. |
---|