Cargando…

A more accurate half-discrete Hardy-Hilbert-type inequality with the logarithmic function

By means of the weight functions, the technique of real analysis and Hermite-Hadamard’s inequality, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of logarithmic function and a best possible constant factor is given. Moreover, the equivalent forms, the operator exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Aizhen, Yang, Bicheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489645/
https://www.ncbi.nlm.nih.gov/pubmed/28713209
http://dx.doi.org/10.1186/s13660-017-1408-x
Descripción
Sumario:By means of the weight functions, the technique of real analysis and Hermite-Hadamard’s inequality, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of logarithmic function and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions, the reverses and some particular cases are also considered.