Cargando…
A more accurate half-discrete Hardy-Hilbert-type inequality with the logarithmic function
By means of the weight functions, the technique of real analysis and Hermite-Hadamard’s inequality, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of logarithmic function and a best possible constant factor is given. Moreover, the equivalent forms, the operator exp...
Autores principales: | Wang, Aizhen, Yang, Bicheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489645/ https://www.ncbi.nlm.nih.gov/pubmed/28713209 http://dx.doi.org/10.1186/s13660-017-1408-x |
Ejemplares similares
-
On a more accurate half-discrete Hardy–Hilbert-type inequality related to the kernel of arc tangent function
por: Chen, Qiang, et al.
Publicado: (2016) -
On Hilbert-type and Hardy-type integral inequalities and applications
por: Yang, Bicheng, et al.
Publicado: (2019) -
Discrete Hilbert-Type Inequalities
por: Yang, Bicheng
Publicado: (2011) -
On a more accurate Hardy-Mulholland-type inequality
por: Yang, Bicheng, et al.
Publicado: (2017) -
Equivalent property of a half-discrete Hilbert’s inequality with parameters
por: Huang, Zhenxiao, et al.
Publicado: (2018)