Cargando…

Protective effect of Korean Red Ginseng against FK506-induced damage in LLC-PK1 cells

BACKGROUND: Compound FK506 is an immunosuppressant agent that is frequently used to prevent rejection of solid organs upon transplant. However, nephrotoxicity due to apoptosis and inflammatory response mediated by FK506 limit its usefulness. In this study, the protective effect of Korean Red Ginseng...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Dahae, Kang, Ki Sung, Yu, Jae Sik, Woo, Jung-Yoon, Hwang, Gwi Seo, Eom, Dae-Woon, Baek, Seung-Hoon, Lee, Hye Lim, Kim, Ki Hyun, Yamabe, Noriko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489745/
https://www.ncbi.nlm.nih.gov/pubmed/28701868
http://dx.doi.org/10.1016/j.jgr.2016.05.002
Descripción
Sumario:BACKGROUND: Compound FK506 is an immunosuppressant agent that is frequently used to prevent rejection of solid organs upon transplant. However, nephrotoxicity due to apoptosis and inflammatory response mediated by FK506 limit its usefulness. In this study, the protective effect of Korean Red Ginseng (KRG) against FK506-induced damage in LLC-PK1 pig kidney epithelial cells was investigated. METHODS: LLC-PK1 cells were exposed to FK506 with KRG and cell viability was measured. Western blotting and RT-PCR analyses evaluated protein expression of MAPKs, caspase-3, and KIM-1. TLR-4 gene expression was assessed. Caspase-3 activities were also determined. The number of apoptotic cells was measured using an image-based cytometric assay. RESULTS: The reduction in LLC-PK1 cell viability by 60μM FK506 was recovered by KRG cotreatment in a dose-dependent manner. The phosphorylation of p38, p44/42 MAPKs (ERK), KIM-1, cleaved caspase-3, and TLR-4 mRNA expression was increased markedly in LLC-PK1 cells treated with 60μM FK506. However, with the exception of p-ERK, elevated levels of p-p38, KIM-1, cleaved caspase-3, and TLR-4 mRNA expression were significantly decreased after cotreatment with KRG. Activity level of caspase-3 was also attenuated by KRG cotreatment. Moreover, image-based cytometric assay showed that apoptotic cell death was increased by 60μM FK506 treatment, whereas it was decreased after cotreatment with KRG. CONCLUSION: Taken together, these results suggest that the molecular mechanism of KRG in the FK506-induced nephrotoxicity may lead to the development of an adjuvant for the inhibition of adverse effect FK506 in the kidney.