Cargando…
Buffers Strongly Modulate Fibrin Self-Assembly into Fibrous Networks
[Image: see text] Fibrin is a plasma protein with a central role in blood clotting and wound repair. Upon vascular injury, fibrin forms resilient fibrillar networks (clots) via a multistep self-assembly process, from monomers, to double-stranded protofibrils, to a branched network of thick fibers. I...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489959/ https://www.ncbi.nlm.nih.gov/pubmed/28558246 http://dx.doi.org/10.1021/acs.langmuir.7b00527 |
_version_ | 1783246888673214464 |
---|---|
author | Kurniawan, Nicholas A. van Kempen, Thomas H. S. Sonneveld, Stijn Rosalina, Tilaï T. Vos, Bart E. Jansen, Karin A. Peters, Gerrit W. M. van de Vosse, Frans N. Koenderink, Gijsje H. |
author_facet | Kurniawan, Nicholas A. van Kempen, Thomas H. S. Sonneveld, Stijn Rosalina, Tilaï T. Vos, Bart E. Jansen, Karin A. Peters, Gerrit W. M. van de Vosse, Frans N. Koenderink, Gijsje H. |
author_sort | Kurniawan, Nicholas A. |
collection | PubMed |
description | [Image: see text] Fibrin is a plasma protein with a central role in blood clotting and wound repair. Upon vascular injury, fibrin forms resilient fibrillar networks (clots) via a multistep self-assembly process, from monomers, to double-stranded protofibrils, to a branched network of thick fibers. In vitro, fibrin self-assembly is sensitive to physicochemical conditions like the solution pH and ionic strength, which tune the strength of the noncovalent driving forces. Here we report a surprising finding that the buffer—which is necessary to control the pH and is typically considered to be inert—also significantly influences fibrin self-assembly. We show by confocal microscopy and quantitative light scattering that various common buffering agents have no effect on the initial assembly of fibrin monomers into protofibrils but strongly hamper the subsequent lateral association of protofibrils into thicker fibers. We further find that the structural changes are independent of the molecular structure of the buffering agents as well as of the activation mechanism and even occur in fibrin networks formed from platelet-poor plasma. This buffer-mediated decrease in protofibril bundling results in a marked reduction in the permeability of fibrin networks but only weakly influences the elastic modulus of fibrin networks, providing a useful tuning parameter to independently control the elastic properties and the permeability of fibrin networks. Our work raises the possibility that fibrin assembly in vivo may be regulated by variations in the acute-phase levels of bicarbonate and phosphate, which act as physiological buffering agents of blood pH. Moreover, our findings add a new example of buffer-induced effects on biomolecular self-assembly to recent findings for a range of proteins and lipids. |
format | Online Article Text |
id | pubmed-5489959 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-54899592017-06-30 Buffers Strongly Modulate Fibrin Self-Assembly into Fibrous Networks Kurniawan, Nicholas A. van Kempen, Thomas H. S. Sonneveld, Stijn Rosalina, Tilaï T. Vos, Bart E. Jansen, Karin A. Peters, Gerrit W. M. van de Vosse, Frans N. Koenderink, Gijsje H. Langmuir [Image: see text] Fibrin is a plasma protein with a central role in blood clotting and wound repair. Upon vascular injury, fibrin forms resilient fibrillar networks (clots) via a multistep self-assembly process, from monomers, to double-stranded protofibrils, to a branched network of thick fibers. In vitro, fibrin self-assembly is sensitive to physicochemical conditions like the solution pH and ionic strength, which tune the strength of the noncovalent driving forces. Here we report a surprising finding that the buffer—which is necessary to control the pH and is typically considered to be inert—also significantly influences fibrin self-assembly. We show by confocal microscopy and quantitative light scattering that various common buffering agents have no effect on the initial assembly of fibrin monomers into protofibrils but strongly hamper the subsequent lateral association of protofibrils into thicker fibers. We further find that the structural changes are independent of the molecular structure of the buffering agents as well as of the activation mechanism and even occur in fibrin networks formed from platelet-poor plasma. This buffer-mediated decrease in protofibril bundling results in a marked reduction in the permeability of fibrin networks but only weakly influences the elastic modulus of fibrin networks, providing a useful tuning parameter to independently control the elastic properties and the permeability of fibrin networks. Our work raises the possibility that fibrin assembly in vivo may be regulated by variations in the acute-phase levels of bicarbonate and phosphate, which act as physiological buffering agents of blood pH. Moreover, our findings add a new example of buffer-induced effects on biomolecular self-assembly to recent findings for a range of proteins and lipids. American Chemical Society 2017-05-30 2017-06-27 /pmc/articles/PMC5489959/ /pubmed/28558246 http://dx.doi.org/10.1021/acs.langmuir.7b00527 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Kurniawan, Nicholas A. van Kempen, Thomas H. S. Sonneveld, Stijn Rosalina, Tilaï T. Vos, Bart E. Jansen, Karin A. Peters, Gerrit W. M. van de Vosse, Frans N. Koenderink, Gijsje H. Buffers Strongly Modulate Fibrin Self-Assembly into Fibrous Networks |
title | Buffers Strongly Modulate Fibrin Self-Assembly into
Fibrous Networks |
title_full | Buffers Strongly Modulate Fibrin Self-Assembly into
Fibrous Networks |
title_fullStr | Buffers Strongly Modulate Fibrin Self-Assembly into
Fibrous Networks |
title_full_unstemmed | Buffers Strongly Modulate Fibrin Self-Assembly into
Fibrous Networks |
title_short | Buffers Strongly Modulate Fibrin Self-Assembly into
Fibrous Networks |
title_sort | buffers strongly modulate fibrin self-assembly into
fibrous networks |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489959/ https://www.ncbi.nlm.nih.gov/pubmed/28558246 http://dx.doi.org/10.1021/acs.langmuir.7b00527 |
work_keys_str_mv | AT kurniawannicholasa buffersstronglymodulatefibrinselfassemblyintofibrousnetworks AT vankempenthomashs buffersstronglymodulatefibrinselfassemblyintofibrousnetworks AT sonneveldstijn buffersstronglymodulatefibrinselfassemblyintofibrousnetworks AT rosalinatilait buffersstronglymodulatefibrinselfassemblyintofibrousnetworks AT vosbarte buffersstronglymodulatefibrinselfassemblyintofibrousnetworks AT jansenkarina buffersstronglymodulatefibrinselfassemblyintofibrousnetworks AT petersgerritwm buffersstronglymodulatefibrinselfassemblyintofibrousnetworks AT vandevossefransn buffersstronglymodulatefibrinselfassemblyintofibrousnetworks AT koenderinkgijsjeh buffersstronglymodulatefibrinselfassemblyintofibrousnetworks |