Cargando…

Reconstructive endovascular treatment of vertebral artery dissecting aneurysms with the Low-profile Visualized Intraluminal Support (LVIS) device

INTRODUCTION: The Low-profile Visualized Intraluminal Support (LVIS) device is a new generation of self-expanding braided stent recently introduced in China for stent assisted coiling of intracranial aneurysms. The aim of our study is to evaluate the feasibility, safety, and efficacy of the LVIS dev...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chuan-Chuan, Fang, Yi-Bin, Zhang, Ping, Zhu, Xuan, Hong, Bo, Xu, Yi, Liu, Jian-Min, Huang, Qing-Hai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491116/
https://www.ncbi.nlm.nih.gov/pubmed/28662097
http://dx.doi.org/10.1371/journal.pone.0180079
Descripción
Sumario:INTRODUCTION: The Low-profile Visualized Intraluminal Support (LVIS) device is a new generation of self-expanding braided stent recently introduced in China for stent assisted coiling of intracranial aneurysms. The aim of our study is to evaluate the feasibility, safety, and efficacy of the LVIS device in reconstructive treatment of vertebral artery dissecting aneurysms (VADAs). METHODS: We retrospectively reviewed the neurointerventional database of our institution from June 2014 to May 2016. Patients who underwent endovascular treatment of VADAs with LVIS stents were included in this study. Clinical presentation, aneurysmal characteristics, technical feasibility, procedural complications, and angiographic and clinical follow-up results were evaluated. RESULTS: 38 patients with VADAs who underwent treatment with LVIS stent were identified, including 3 ruptured VADAs. All VADAs were successfully treated with reconstructive techniques including the stent-assisted coiling (n = 34) and stenting only (n = 4). Post-procedural complications developed in 3 patients (7.9%) including two small brainstem infarctions and one delayed thromboembolic event. Complications resulted in one case of minor permanent morbidity (2.6%). There was no procedure-related mortality. The follow-up angiogram was available in 30 patients at an average of 8.3 months (range, 2 to 30 months), which revealed complete occlusion in 23 patients (76.7%), residual neck in five patients (16.7%), and residual sac in two patients (6.7%). The follow-up of 25 aneurysms with incomplete immediate occlusion revealed 22 aneurysms (88%) with improvement in the Raymond class. One aneurysm (3.3%) showed recanalization and required retreatment. Clinical followed-up at 5–28 months (mean 14.1 months) was achieved in 36 patients because two patients died of pancreatic cancer and basal ganglia hemorrhage, respectively. No new neurologic deterioration or aneurysm (re)bleeding was observed. CONCLUSIONS: Our preliminary experience with reconstruction of VADAs with the LVIS device demonstrates that this treatment approach is feasible with good short-term angiographic and clinical outcomes. Long-term and larger cohort studies are necessary to determine long-term outcomes of this therapy.