Cargando…

Repeated Oral Administration of Human Serum Albumin Protects from the Cerebral Ischemia in Rat Brain Following MCAO

Albumin is known to have neuroprotective effects. The protein has a long half-life circulation, and its effects can therefore persist for a long time to aid in the recovery of brain ischemia. In the present study, we investigated the neuroprotective effects of human serum albumin (HSA) on brain hemo...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Hyejin, Hong, Minyoung, Jhon, Gil-Ja, Lee, Youngmi, Suh, Minah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Brain and Neural Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491583/
https://www.ncbi.nlm.nih.gov/pubmed/28680300
http://dx.doi.org/10.5607/en.2017.26.3.151
_version_ 1783247159782539264
author Park, Hyejin
Hong, Minyoung
Jhon, Gil-Ja
Lee, Youngmi
Suh, Minah
author_facet Park, Hyejin
Hong, Minyoung
Jhon, Gil-Ja
Lee, Youngmi
Suh, Minah
author_sort Park, Hyejin
collection PubMed
description Albumin is known to have neuroprotective effects. The protein has a long half-life circulation, and its effects can therefore persist for a long time to aid in the recovery of brain ischemia. In the present study, we investigated the neuroprotective effects of human serum albumin (HSA) on brain hemodynamics. Albumin is administrated using repeated oral gavage to the rodents. Sprague-Dawley rats underwent middle cerebral artery occlusion procedures and served as a stroke model. Afterwards, 25% human serum albumin (1.25 g/kg) or saline (5 ml/kg) was orally administrated for 2 weeks in alternating days. After 2 weeks, the rodents were assessed for levels of brain ischemia. Our testing battery consists of behavioral tests and in vivo optical imaging sessions. Modified neurological severity scores (mNSS) were obtained to assess the levels of ischemia and the effects of HSA oral administration. We found that the experimental group demonstrated larger hemodynamic responses following sensory stimulation than controls that were administered with saline. HSA administration resulted in more significant changes in cerebral blood volume following direct cortical electric stimulation. In addition, the mNSS of the treatment group was lower than the control group. In particular, brain tissue staining revealed that the infarct size was also much smaller with HSA administration. This study provides support for the efficacy of HSA, and that long-term oral administration of HSA may induce neuroprotective effects against brain ischemia.
format Online
Article
Text
id pubmed-5491583
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher The Korean Society for Brain and Neural Science
record_format MEDLINE/PubMed
spelling pubmed-54915832017-07-05 Repeated Oral Administration of Human Serum Albumin Protects from the Cerebral Ischemia in Rat Brain Following MCAO Park, Hyejin Hong, Minyoung Jhon, Gil-Ja Lee, Youngmi Suh, Minah Exp Neurobiol Original Article Albumin is known to have neuroprotective effects. The protein has a long half-life circulation, and its effects can therefore persist for a long time to aid in the recovery of brain ischemia. In the present study, we investigated the neuroprotective effects of human serum albumin (HSA) on brain hemodynamics. Albumin is administrated using repeated oral gavage to the rodents. Sprague-Dawley rats underwent middle cerebral artery occlusion procedures and served as a stroke model. Afterwards, 25% human serum albumin (1.25 g/kg) or saline (5 ml/kg) was orally administrated for 2 weeks in alternating days. After 2 weeks, the rodents were assessed for levels of brain ischemia. Our testing battery consists of behavioral tests and in vivo optical imaging sessions. Modified neurological severity scores (mNSS) were obtained to assess the levels of ischemia and the effects of HSA oral administration. We found that the experimental group demonstrated larger hemodynamic responses following sensory stimulation than controls that were administered with saline. HSA administration resulted in more significant changes in cerebral blood volume following direct cortical electric stimulation. In addition, the mNSS of the treatment group was lower than the control group. In particular, brain tissue staining revealed that the infarct size was also much smaller with HSA administration. This study provides support for the efficacy of HSA, and that long-term oral administration of HSA may induce neuroprotective effects against brain ischemia. The Korean Society for Brain and Neural Science 2017-06 2017-06-16 /pmc/articles/PMC5491583/ /pubmed/28680300 http://dx.doi.org/10.5607/en.2017.26.3.151 Text en Copyright © Experimental Neurobiology 2017. http://creativecommons.org/licenses/by-nc/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Park, Hyejin
Hong, Minyoung
Jhon, Gil-Ja
Lee, Youngmi
Suh, Minah
Repeated Oral Administration of Human Serum Albumin Protects from the Cerebral Ischemia in Rat Brain Following MCAO
title Repeated Oral Administration of Human Serum Albumin Protects from the Cerebral Ischemia in Rat Brain Following MCAO
title_full Repeated Oral Administration of Human Serum Albumin Protects from the Cerebral Ischemia in Rat Brain Following MCAO
title_fullStr Repeated Oral Administration of Human Serum Albumin Protects from the Cerebral Ischemia in Rat Brain Following MCAO
title_full_unstemmed Repeated Oral Administration of Human Serum Albumin Protects from the Cerebral Ischemia in Rat Brain Following MCAO
title_short Repeated Oral Administration of Human Serum Albumin Protects from the Cerebral Ischemia in Rat Brain Following MCAO
title_sort repeated oral administration of human serum albumin protects from the cerebral ischemia in rat brain following mcao
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491583/
https://www.ncbi.nlm.nih.gov/pubmed/28680300
http://dx.doi.org/10.5607/en.2017.26.3.151
work_keys_str_mv AT parkhyejin repeatedoraladministrationofhumanserumalbuminprotectsfromthecerebralischemiainratbrainfollowingmcao
AT hongminyoung repeatedoraladministrationofhumanserumalbuminprotectsfromthecerebralischemiainratbrainfollowingmcao
AT jhongilja repeatedoraladministrationofhumanserumalbuminprotectsfromthecerebralischemiainratbrainfollowingmcao
AT leeyoungmi repeatedoraladministrationofhumanserumalbuminprotectsfromthecerebralischemiainratbrainfollowingmcao
AT suhminah repeatedoraladministrationofhumanserumalbuminprotectsfromthecerebralischemiainratbrainfollowingmcao