Cargando…
A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network
In this paper, we propose a cost-effective localization solution for land vehicles, which can simultaneously adapt to the uncertain noise of inertial sensors and bridge Global Positioning System (GPS) outages. First, three Unscented Kalman filters (UKFs) with different noise covariances are introduc...
Autores principales: | Xu, Qimin, Li, Xu, Chan, Ching-Yao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492038/ https://www.ncbi.nlm.nih.gov/pubmed/28629165 http://dx.doi.org/10.3390/s17061431 |
Ejemplares similares
-
MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
por: Piga, Nicola A., et al.
Publicado: (2021) -
An improved epidemiological-unscented Kalman filter (hybrid SEIHCRDV-UKF) model for the prediction of COVID-19. Application on real-time data
por: Papageorgiou, Vasileios E., et al.
Publicado: (2023) -
Vehicle State Estimation Combining Physics-Informed Neural Network and Unscented Kalman Filtering on Manifolds
por: Tan, Chenkai, et al.
Publicado: (2023) -
Unscented Kalman Filter for Brain-Machine Interfaces
por: Li, Zheng, et al.
Publicado: (2009) -
Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction
por: Li, Zhencai, et al.
Publicado: (2016)