Cargando…
Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review
Among magnetoelectric (ME) heterostructures, ME laminates of the type Metglas-like/PVDF (magnetostrictive+piezoelectric constituents) have shown the highest induced ME voltages, usually detected at the magnetoelastic resonance of the magnetostrictive constituent. This ME coupling happens because of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492088/ https://www.ncbi.nlm.nih.gov/pubmed/28561784 http://dx.doi.org/10.3390/s17061251 |
_version_ | 1783247257080954880 |
---|---|
author | Gutiérrez, Jon Lasheras, Andoni Martins, Pedro Pereira, Nélson Barandiarán, Jose M. Lanceros-Mendez, Senentxu |
author_facet | Gutiérrez, Jon Lasheras, Andoni Martins, Pedro Pereira, Nélson Barandiarán, Jose M. Lanceros-Mendez, Senentxu |
author_sort | Gutiérrez, Jon |
collection | PubMed |
description | Among magnetoelectric (ME) heterostructures, ME laminates of the type Metglas-like/PVDF (magnetostrictive+piezoelectric constituents) have shown the highest induced ME voltages, usually detected at the magnetoelastic resonance of the magnetostrictive constituent. This ME coupling happens because of the high cross-correlation coupling between magnetostrictive and piezoelectric material, and is usually associated with a promising application scenario for sensors or actuators. In this work we detail the basis of the operation of such devices, as well as some arising questions (as size effects) concerning their best performance. Also, some examples of their use as very sensitive magnetic fields sensors or innovative energy harvesting devices will be reviewed. At the end, the challenges, future perspectives and technical difficulties that will determine the success of ME composites for sensor applications are discussed. |
format | Online Article Text |
id | pubmed-5492088 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54920882017-07-03 Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review Gutiérrez, Jon Lasheras, Andoni Martins, Pedro Pereira, Nélson Barandiarán, Jose M. Lanceros-Mendez, Senentxu Sensors (Basel) Review Among magnetoelectric (ME) heterostructures, ME laminates of the type Metglas-like/PVDF (magnetostrictive+piezoelectric constituents) have shown the highest induced ME voltages, usually detected at the magnetoelastic resonance of the magnetostrictive constituent. This ME coupling happens because of the high cross-correlation coupling between magnetostrictive and piezoelectric material, and is usually associated with a promising application scenario for sensors or actuators. In this work we detail the basis of the operation of such devices, as well as some arising questions (as size effects) concerning their best performance. Also, some examples of their use as very sensitive magnetic fields sensors or innovative energy harvesting devices will be reviewed. At the end, the challenges, future perspectives and technical difficulties that will determine the success of ME composites for sensor applications are discussed. MDPI 2017-05-31 /pmc/articles/PMC5492088/ /pubmed/28561784 http://dx.doi.org/10.3390/s17061251 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Gutiérrez, Jon Lasheras, Andoni Martins, Pedro Pereira, Nélson Barandiarán, Jose M. Lanceros-Mendez, Senentxu Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review |
title | Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review |
title_full | Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review |
title_fullStr | Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review |
title_full_unstemmed | Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review |
title_short | Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review |
title_sort | metallic glass/pvdf magnetoelectric laminates for resonant sensors and actuators: a review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492088/ https://www.ncbi.nlm.nih.gov/pubmed/28561784 http://dx.doi.org/10.3390/s17061251 |
work_keys_str_mv | AT gutierrezjon metallicglasspvdfmagnetoelectriclaminatesforresonantsensorsandactuatorsareview AT lasherasandoni metallicglasspvdfmagnetoelectriclaminatesforresonantsensorsandactuatorsareview AT martinspedro metallicglasspvdfmagnetoelectriclaminatesforresonantsensorsandactuatorsareview AT pereiranelson metallicglasspvdfmagnetoelectriclaminatesforresonantsensorsandactuatorsareview AT barandiaranjosem metallicglasspvdfmagnetoelectriclaminatesforresonantsensorsandactuatorsareview AT lancerosmendezsenentxu metallicglasspvdfmagnetoelectriclaminatesforresonantsensorsandactuatorsareview |