Cargando…
Crop Classification in Satellite Images through Probabilistic Segmentation Based on Multiple Sources †
Classification methods based on Gaussian Markov Measure Field Models and other probabilistic approaches have to face the problem of construction of the likelihood. Typically, in these methods, the likelihood is computed from 1D or 3D histograms. However, when the number of information sources grows,...
Autores principales: | Dalmau, Oscar S., Alarcón, Teresa E., Oliva, Francisco E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492153/ https://www.ncbi.nlm.nih.gov/pubmed/28608825 http://dx.doi.org/10.3390/s17061373 |
Ejemplares similares
-
An Agave Counting Methodology Based on Mathematical Morphology and Images Acquired through Unmanned Aerial Vehicles
por: Calvario, Gabriela, et al.
Publicado: (2020) -
Pre-crop Values From Satellite Images for Various Previous and Subsequent Crop Combinations
por: Peltonen-Sainio, Pirjo, et al.
Publicado: (2019) -
Tree Crowns Segmentation and Classification in Overlapping Orchards Based on Satellite Images and Unsupervised Learning Algorithms
por: Moussaid, Abdellatif, et al.
Publicado: (2021) -
Embedded Implementation of VHR Satellite Image Segmentation
por: Li, Chao, et al.
Publicado: (2016) -
Forest Cover Classification by Optimal Segmentation of High Resolution Satellite Imagery
por: Kim, So-Ra, et al.
Publicado: (2011)